Growth, Electronic Structure, and Electrochemical Properties of Cubic BaTiO3 Synthesized by Low-Pressure Hydrothermal-Assisted Sintering

https://doi.org/10.22146/ijc.68978

Mohammad Khotib(1*), Bambang Soegijono(2), Zainal Alim Mas'ud(3), Gina Libria Nadjamoeddin(4)

(1) Department of Chemistry, Bogor Agricultural University, Chemistry Building, Wing 1, 3rd Floor, Jl. Tanjung, IPB Darmaga Campus, Bogor 16680, Indonesia Laboratory for Testing, Calibration and Certification Services, Bogor Agricultural University, Baranangsiang Campus, Jl. Padjajaran, Bogor 16129, Indonesia
(2) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
(3) Department of Chemistry, Bogor Agricultural University, Chemistry Building, Wing 1, 3rd Floor, Jl. Tanjung, IPB Darmaga Campus, Bogor 16680, Indonesia Laboratory for Testing, Calibration and Certification Services, Bogor Agricultural University, Baranangsiang Campus, Jl. Padjajaran, Bogor 16129, Indonesia
(4) Laboratory for Testing, Calibration and Certification Services, Bogor Agricultural University, Baranangsiang Campus, Jl. Padjajaran, Bogor 16129, Indonesia
(*) Corresponding Author

Abstract


Cubic BaTiO3 was synthesized through low-pressure hydrothermal-assisted sintering using Ba(OH)2 and TiO2 as precursors with a mol ratio of Ba:Ti = 1.4:1. The single phase of cubic BaTiO3 was produced at a sintering temperature of 800 °C for 2, 4, 8, and 12 h. The absence of diffraction peak splitting at 2q of 45° was indicated cubic BaTiO3. The crystallite size of BaTiO3 ranged from 80–200 nm, and its size increased with increasing temperatures and sintering times. The micro-strain of the BaTiO3 crystal lattice had a range between 0.27 and 0.68%. The minimum bandgap on the indirect bandgap was about 1.75 eV from point M to Γ, while the direct bandgap was about 1.95 eV from Γ to Γ. Ti–O's interaction had a covalent character, while that of Ba–O had an ionic character based on the density of state (DOS) calculation. The characteristics of the BaTiO3 voltammogram show an irreversible redox mechanism with a more observable reduction peak in Ti4+/Ti3+. Higher current density at over potential indicated greater BaTiO3 capabilities in Oxygen Evolution Reaction (OER)-Oxygen Reduction Reaction (ORR) electrocatalysis. For that, purified cubic BaTiO3 offers potential application as an electrode for batteries, water splitting systems, and regenerative fuel cells.


Keywords


cubic BaTiO3; bandgap; the density of state; oxygen evolution-reduction; electrocatalyst



References

[1] Chen, T., Meng, J., Wu, S., Pei, J., Lin, Q., Wei, X., Li, J., and Zhang, Z., 2018, Room temperature synthesized BaTiO3 for photocatalytic hydrogen evolution, J. Alloys Compd., 754, 184–189.

[2] Artrith, N., Sailuam, W., Limpijumnong, S., and Kolpak, A.M., 2016, Reduced overpotentials for electrocatalytic water splitting over Fe-and Ni-modified BaTiO3, Phys. Chem. Chem. Phys., 18 (42), 29561–29570.

[3] Kudłacik-Kramarczyk, S., Drabczyk, A., Głąb, M., Dulian, P., Bogucki, R., Miernik, K., Sobczak-Kupiec, A., and Tyliszczak, B., 2020, Mechanochemical synthesis of BaTiO3 powders and evaluation of their acrylic dispersions, Materials, 13 (15), 3275.

[4] Gaikwad, A.S., More, S.S., Kathare, R.V., Mane, M.L., Borade, R.B., Vijapure, Y.A., Kadam, A.B., 2018, Barium titanate (BaTiO3) synthesized by sol-gel auto-combustion method, Int. Res. J. Sci. Eng., A5, 41–44.

[5] Wang, W., Cao, L., Liu, W., Su, G., and Zhang, W., 2013, Low-temperature synthesis of BaTiO3 powders by the sol–gel-hydrothermal method, Ceram. Int., 39 (6), 7127–7134.

[6] Wu, Y.T., Wang, X.F., Yu, C.L., and Li, E.Y., 2012, Preparation and characterization of barium titanate (BaTiO3) nano-powders by pechini sol-gel method, Mater. Manuf. Processes, 27 (12), 1329–1333.

[7] Zanfir, A.V., Voicu, G., Jinga, S.I., Vasile, E., and Ionita, V., 2016, Low-temperature synthesis of BaTiO3 nanopowders, Ceram. Int., 42 (1), 1672–1678.

[8] Zhang, B., Jin, H., Liu, X., Guo, X., He, G., and Yang, S., 2019, The formation and application of submicron spherical BaTiO3 particles for the diffusion layer of medical dry films, Crystals, 9 (11), 594.

[9] Gao, Y., Shvartsman, V.V., Elsukova, A., and Lupascu, D.C., 2012, Low-temperature synthesis of crystalline BaTiO3 nanoparticles by one-step "organosol"-precipitation, J. Mater. Chem., 22 (34), 17573–17583.

[10] Bowland, C.C., and Sodano, H.A., 2017, Hydrothermal synthesis of tetragonal phase BaTiO3 on carbon fiber with enhanced electromechanical coupling, J. Mater. Sci., 52 (13), 7893–7906.

[11] Li, J., Inukai, K., Tsuruta, A., Takahashi, Y., and Shin, W., 2017, Synthesis of highly disperse tetragonal BaTiO3 nanoparticles with core–shell by a hydrothermal method, J. Asian Ceram. Soc., 5 (4), 444–451.

[12] Yan, C., Zou, L., Xue, D., Xu, J., and Liu, M., 2008, Chemical tuning polymorphology of functional materials by hydrothermal and solvothermal reactions, J. Mater. Sci., 43 (7), 2263–2269.

[13] Khan, M., Mishra, A., Shukla, J., and Sharma, P., 2019, X-ray analysis of BaTiO3 ceramics by Williamson-Hall and size strain plot methods, AIP Conf. Proc., 2100, 020138.

[14] Yun, H.S., Yun, B.G., Shin, S.Y., Jeong, D.Y., and Cho, N.H., 2021, Crystallization kinetics in BaTiO3 synthesis from hydrate precursors via microwave-assisted heat treatment, Nanomaterials, 11 (3), 754.

[15] Usher, T.M., Kavey, B., Caruntu, G., and Page, K., 2020, Effect of BaCO3 impurities on the structure of BaTiO3 nanocrystals: Implications for multilayer ceramic capacitors, ACS Appl. Nano Mater., 3 (10), 9715–9723.

[16] Viviani, M., Buscaglia, M.T., Testino, A., Buscaglia, V., Bowen, P., and Nanni, P., 2003, The influence of concentration on the formation of BaTiO3 by direct reaction of TiCl4 with Ba(OH)2 in aqueous solution, J. Eur. Ceram. Soc., 23 (9), 1383–1390.

[17] Pasuk, I., Neațu, F., Neațu, Ș., Florea, M., Istrate, C.M., Pintilie, I., and Pintilie, L., 2021, Structural details of BaTiO3 nano-powders deduced from the anisotropic XRD peak broadening, Nanomaterials, 11 (5), 1121.

[18] Lee, H.W., Moon, S., Choi, C.H., and Kim, D.K., 2012, Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method, J. Am. Ceram. Soc., 95 (8), 2429–2434.

[19] Li, M., Gu, L., Li, T., Hao, S., Tan, F., Chen, D., Zhu, D., Xu, Y., Sun, C., and Yang, Z., 2020, TiO2-seeded hydrothermal growth of spherical BaTiO3 nanocrystals for capacitor energy-storage application, Crystals, 10 (3), 202.

[20] Ahn, K.H., Lee, Y.H., Kim, M., Lee, H.S., Youn, Y.S., Kim, J., and Lee, Y.W., 2013, Effects of surface area of titanium dioxide precursors on the hydrothermal synthesis of barium titanate by dissolution–precipitation, Ind. Eng. Chem. Res., 52 (37), 13370–13376.

[21] Habib, A., Stelzer, N., Angerer, P., and Haubner, R., 2011, Effect of temperature and time on solvothermal synthesis of tetragonal BaTiO3, Bull. Mater. Sci., 34 (1), 19–23.

[22] Wu, M., Long, J., Wang, G., Huang, A., Luo, Y., Feng, S., and Xu, R., 1999, Hydrothermal synthesis of tetragonal barium titanate from barium hydroxide and titanium dioxide under moderate conditions, J. Am. Ceram. Soc., 82 (11), 3254–3256.

[23] Maxim, F., Ferreira, P., Vilarinho, P.M., Aimable, A., and Bowen, P., 2010, Additive-assisted aqueous synthesis of BaTiO3 nanopowders, Cryst. Growth Des., 10 (9), 3996–4004.

[24] Ortiz-Landeros, J., Gómez-Yáñez, C., López-Juárez, R., Dávalos-Velasco, I., and Pfeiffer, H., 2012, Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods, J. Adv. Ceram., 1 (3), 204–220.

[25] Fu, F., Zhai, J., Xu, Z., Shen, B., and Yao, X., 2014, Grain growth kinetics of textured-BaTiO3 ceramics, Bull. Mater. Sci., 37 (4), 779–787.

[26] Kambale, K.R., Kulkarni, A.R., and Venkataramani, N., 2014, Grain growth kinetics of barium titanate synthesized using conventional solid state reaction route, Ceram. Int., 40 (1), 667–673.

[27] Osman, K.I., 2011, Synthesis and Characterization of BaTiO3 Ferroelectric Material, Dissertation, Faculty of Engineering, Cairo University.

[28] Rohj, R.K., Hossain, A., Mahadevan, P., and Sarma, D.D., 2021, Band gap reduction in ferroelectric BaTiO3 through heterovalent Cu-Te co-doping for visible-light photocatalysis, Front. Chem., 9, 682979.

[29] Taib, M.F.M., Hussin, N.H., Samat, M.H., Hassan, O.H., and Yahya, M.Z.A., 2016, Structural, electronic and optical properties of BaTiO3 and BaFeO3 from first principles LDA+U study, Int. J. Electroact. Mater, 4, 14–17.

[30] Gomez-Yañez, C., Benitez, C., and Balmori-Ramirez, H., 2000, Mechanical activation of the synthesis reaction of BaTiO3 from a mixture of BaCO3 and TiO2 powders, Ceram. Int., 26 (3), 271–277.

[31] Hennings, D., and Schreinemacher, S., 1992, Characterization of hydrothermal barium titanate, J. Eur. Ceram. Soc., 9 (1), 41–46.

[32] Chen, C.F., King, G., Dickerson, R.M., Papin, P.A., Gupta, S., Kellogg, W.R., and Wu, G., 2015, Oxygen-deficient BaTiO3−x perovskite as an efficient bifunctional oxygen electrocatalyst, Nano Energy, 13, 423–432.

[33] Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., and Chen, H.M., 2017, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev., 46 (2), 337–365.

[34] Hong, W.T., Risch, M., Stoerzinger, K.A., Grimaud, A., Suntivich, J., and Shao-Horn, Y., 2015, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis, Energy Environ. Sci., 8 (5), 1404–1427.



DOI: https://doi.org/10.22146/ijc.68978

Article Metrics

Abstract views : 1817 | views : 781 | views : 479


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.