Tyrosinase-Based Paper Biosensor for Phenolics Measurement


Fretty Yurike(1), Dyah Iswantini(2*), Henny Purwaningsih(3), Suminar Setiati Achmadi(4)

(1) Department of Chemistry, IPB University, Kampus IPB Dramaga, Bogor 16680, Indonesia
(2) Department of Chemistry, IPB University, Kampus IPB Dramaga, Bogor 16680, Indonesia
(3) Department of Chemistry, IPB University, Kampus IPB Dramaga, Bogor 16680, Indonesia
(4) Department of Chemistry, IPB University, Kampus IPB Dramaga, Bogor 16680, Indonesia
(*) Corresponding Author


Environmental pollution resulting from various industrial activities is still a problem for developing countries. The high content of phenolics such as phenols, polyphenols, bisphenol A, catechol, m- and p-cresol from industrial activities are discharged into surface water, soil, and air. Periodic monitoring of the impact of these toxic pollutants is needed for proper control and handling. These detrimental chemicals are usually measured using conventional methods with many drawbacks such as expensive analysis costs, long measurement times, requiring competent analysts, and complicated instrument maintenance. However, the presence of tyrosinase-based paper biosensors is now considered the most promising tool in overcoming the challenges mentioned earlier because they can detect these components quickly, precisely, accurately, inexpensively, and can be measured in situ. The working principle of this biosensor sees optical changes such as dyes, redox processes, and physicochemical properties (aggregation or dispersion) due to the presence of analytes accompanied by the occurrence of color changes that appear. This biosensor uses a layer-by-layer electrostatic method, which causes the deposition of multi-layered films on solid surfaces. In this paper, we review the development of the tyrosinase-based paper biosensor method for phenolic measurement in water, air, and food that gives better results than the conventional methods.


paper biosensors; phenolic compounds; phenols; tyrosinase; wastewater

Full Text:

Full Text PDF


[1] Direktorat Jenderal, Pencemaran dan Pengendalian, 2017, Work Report (Laporan Kinerja 2017), Jakarta.

[2] Menteri Negara Lingkungan Hidup, 2014, Peraturan Menteri Lingkungan Hidup RI No. 5 Tahun 2014 Tentang Baku Mutu Air Limbah, The Ministry of Environment Republic of Indonesia, Jakarta, 1–83.

[3] Mu’azu, N.D., Jarrah, N., Zubair, M., and Alagha, O., 2017, Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: A review, Int. J. Environ. Res. Public Health, 14 (10), 1094.

[4] Fikri, E., Putri, A.N.S., Prijanto, T.B., and Syarief, O., 2020, Study of liquid waste quality and potential pollution load of motor vehicle wash business in Bekasi city (Indonesia), J. Ecol. Eng., 21 (3), 128–134.

[5] Li, G., Wang, X., Xu, Y., Zhang, B., and Xia, X., 2014, Antimicrobial effect and mode of action of chlorogenic acid on Staphylococcus aureus, Eur. Food Res. Technol., 238 (4), 589–596.

[6] Rahimi-Mohseni, M., Raoof, J.B., Aghajanzadeh, T.A., and Ojani, R., 2019, Rapid determination of phenolic compounds in water samples: Development of a paper-based nanobiosensor modified with functionalized silica nanoparticles and potato tissue, Electroanalysis, 31 (12), 2311–2318.

[7] Li, S., Liu, Y., Wang, Y., Wang, M., Liu, C., and Wang, Y., 2019, Rapid detection of Brucella spp. and elimination of carryover using multiple cross displacement amplification coupled with nanoparticles-based lateral flow biosensor, Front. Cell. Infect. Microbiol., 9, 78.

[8] Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T., and Bakhtiari, O., 2014, Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane, Chem. Eng. Res. Des., 92 (2), 375–383.

[9] Karim, F., and Fakhruddin, A.N.M., 2012, Recent advances in the development of biosensor for phenol: A review, Rev. Environ. Sci. Bio/Technol., 11 (3), 261–274.

[10] Zhong, W., Wang, D., and Wang, Z., 2018, Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China, Environ. Pollut., 235, 121–128.

[11] Ragavan, K.V., Kumar, S., Swaraj, S., and Neethirajan, S., 2018, Advances in biosensors and optical assays for diagnosis and detection of malaria, Biosens. Bioelectron., 105, 188–210.

[12] Flint, S., Markle, T., Thompson, S., and Wallace, E., 2012, Bisphenol A exposure, effects, and policy: A wildlife perspective, J. Environ. Manage.,104, 19–34.

[13] Chen, Q.X., Liu, X.D., and Huang, H., 2003, Inactivation kinetics of mushroom tyrosinase in the dimethyl sulfoxide solution, Biochemistry, 68 (6), 788–794.

[14] Hernández, A.F., Bennekou, S.H., Hart, A., Mohimont, L., and Wolterink, G., 2020, Mechanisms underlying disruptive effects of pesticides on the thyroid function, Curr. Opin Toxicol., 19, 34–41.

[15] Zhang, Y., Zhang, C., Dong, F., Chen, M., Cao, J., Wang, H., and Jiang, M., 2017, Inhibition of autophagy aggravated 4-nitrophenol-induced oxidative stress and apoptosis in NHPrE1 human normal prostate epithelial progenitor cells, Regul. Toxicol. Pharmacol., 87, 88–94.

[16] Michałowicz, J., 2014, Bisphenol A-Sources, toxicity and biotransformation, Environ. Toxicol. Pharmacol., 37 (2), 738–758.

[17] Griffin, S., 2017, Biosensors for cancer detection applications, Missouri S&T’s Peer to Peer, 1 (2), 6.

[18] Zhang, Y., Lyu, H., 2021, Application of biosensors based on nanomaterials in cancer cell detection, J. Phys.: Conf. Ser., 1948, 012149.

[19] Xiao, F.X., Pagliaro, M., Xu, Y.J., and Liu, B., 2016, Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: A new perspective for rational construction of multilayer assemblies, Chem. Soc. Rev., 45 (11), 3088–3121.

[20] Mackuľak, T., Gál, M., Špalková, V., Fehér, M., Briestenská, K., Mikušová, M., Tomčíková, K., Tamáš, M., and Butor Škulcová, A., 2021, Wastewater-based epidemiology as an early warning system for the spreading of SARS-CoV-2 and its mutations in the population, Int. J. Environ. Res. Public Health, 18 (11), 5629.

[21] Wang, Y., Song, J., Zhao, W., He, X., Chen, J., and Xiao, M., 2011, In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain, J. Hazard. Mater., 192 (1), 354–360.

[22] Sassolas, A., Blum, L.J., and Leca-Bouvier, B.D., 2012, Immobilization strategies to develop enzymatic biosensors, Biotechnol. Adv., 30 (3), 489–511.

[23] Vigneshvar, S., Sudhakumari, C.C., Senthilkumaran, B., and Prakash, H., 2016, Recent advances in biosensor technology for potential applications-An overview, Front. Bioeng. Biotechnol., 4, 11.

[24] Zhou, L., Zhang, X., Ma, L., Gao, J., and Jiang, Y., 2017, Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection, Biochem. Eng. J., 128, 243–249.

[25] Verma, S., Choudhary, J., Singh, K.P., Chandra, P., and Singh, S.P., 2019, Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples, Int. J. Biol. Macromol., 130, 333–341.

[26] Verma, M.L., and Rani, V., 2021, Biosensors for toxic metals, polychlorinated biphenyls, biological oxygen demand, endocrine disruptors, hormones, dioxin, phenolic and organophosphorus compounds: A review, Environ. Chem. Lett., 19 (2), 1657–1666.

[27] Schirmer, C., Posseckardt, J., Kick, A., Rebatschek, K., Fichtner, W., Ostermann, K., Schuller, A., Rödel, G., and Mertig, M., 2018, Encapsulating genetically modified Saccharomyces cerevisiae cells in a flow-through device towards the detection of diclofenac in wastewater, J. Biotechnol., 284, 75–83.

[28] Hashemi Goradel, N., Mirzaei, H., Sahebkar, A., Poursadeghiyan, M., Masoudifar, A., Malekshahi, Z.V., and Negahdari, B., 2018, Biosensors for the detection of environmental and urban pollutions, J. Cell. Biochem., 119 (1), 207–212.

[29] Bilal, M., and Iqbal, H.M.N., 2019, Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook, Process Saf. Environ. Prot., 124, 8–17.

[30] Thavarajah, W., Silverman, A.D., Verosloff, M.S., Kelley-Loughnane, N., Jewett, M.C., and Lucks, J.B., 2020, Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor, ACS Synth. Biol., 9 (1), 10–18.

[31] Antunes, R.S., Ferraz, D., Garcia, L.F., Thomaz, D.V., Luque, R., Lobón, G.S., Gil, E.D., and Lopes, F.M., 2018, Development of a polyphenol oxidase biosensor from Jenipapo fruit extract (Genipa americana L.) and determination of phenolic compounds in textile industrial effluents, Biosensors, 8 (2), 47.

[32] Bartolucci, C., Antonacci, A., Arduini, F., Moscone, D., Fraceto, L., Campos, E., Attaallah, R., Amine, A., Zanardi, C., Cubillana-Aguilera, L.M., Palacios Santander, J.M., and Scognamiglio, V., 2020, Green nanomaterials fostering agrifood sustainability, TrAC, Trends Anal. Chem., 125, 115840.

[33] Arduini, F., Micheli, L., Scognamiglio, V., Mazzaracchio, V., and Moscone, D., 2020, Sustainable materials for the design of forefront printed (bio)sensors applied in agrifood sector, TrAC, Trends Anal. Chem., 128, 115909.

[34] Puangbanlang, C., Sirivibulkovit, K., Nacapricha, D., and Sameenoi, Y., 2019, A paper-based device for simultaneous determination of antioxidant activity and total phenolic content in food samples, Talanta, 198, 542–549.

[35] Manurung, R.V., Prabowo, B.A., Hermida, I.D.P., Kurniawan, D., Sulaeman, Y., and Heryana, A., 2019, Development ion phosphate sensor system for precision farming, IOP Conf. Ser.: Mater. Sci. Eng., 620, 012093.

[36] Singh, S., Kumar, V., Dhanjal, D.S., Datta, S., Prasad, R., and Singh, J., 2020, “Biological Biosensors for Monitoring and Diagnosis” in Microbial Biotechnology: Basic Research and Applications, Eds. Sing, J., Vyas, A., Wang, S. and Prasad, R., Springer Nature, Singapore, 317–335.

[37] Mishra, R.K., Hubble, L.J., Martín, A., Kumar, R., Barfidokht, A., Kim, J., Musameh, M.M., Kyratzis, I.L., and Wang, J., 2017, Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats, ACS Sens., 2 (4), 553–561.

[38] Kuswandi, B., 2018, “Nanobiosensors for Detection of Micropollutants” in Environmental Nanotechnology, Eds. Dasgupta, N., Ranjan, S., and Lichtfouse, E., Springer International Publishing, Cham, 125–158.

[39] Iswantini, D., Silitonga, RF., Martatilofa, E., and Darusman, LK., 2011, Zingiber cassumunar, Guazuma ulmifolia, and Murraya paniculata extracts as antiobesity: In vitro inhibitory effect on pancreatic lipase activity, HAYATI J. Biosci., 18 (1), 6–10.

[40] Iswantini, D., Nurhidayat, N., Trivadilla, T., and Widiyatmoko, O., 2014, Activity and stability of uricase from Lactobacillus plantarum immobilized on natural zeolite for uric acid biosensor, Pak. J. Biol. Sci., 17 (2), 277–281.

[41] Dutta, G., 2020, Electrochemical biosensors for rapid detection of malaria, Mater. Sci. Energy Technol., 3, 150–158.

[42] Patel, S., Nanda, R., Sahoo, S., and Mohapatra, E., 2016, Biosensors in health care: The milestones achieved in their development towards lab-on-chip-analysis, Biochem. Res. Int., 2016, 3130469.

[43] Gabriel, E.F.M., Garcia, P.T., Lopes, F.M., and Coltro, W.K.T., 2017, Paper-based colorimetric biosensor for tear glucose measurements, Micromachines, 8 (4), 104.

[44] Nguyen, H.H., Lee, S.H., Lee, U.J., Fermin, C.D., and Kim, M., 2019, Immobilized enzymes in biosensor applications, Materials, 12 (1), 121.

[45] Choi, J.R., Yong, K.W., Choi, J.Y., and Cowie, A.C., 2019, Emerging point-of-care technologies for food safety analysis, Sensors, 19 (4), 817.

[46] Song, K.K., Huang, H., Han, P., Zhang C.L., Shi, Y., and Chen, Q.X., 2006, Inhibitory effects of cis- and trans-isomers of 3,5-dihydroxystilbene on the activity of mushroom tyrosinase, Biochem. Biophys. Res. Commun., 342 (4), 1147–1151.

[47] Tsopela, A., Laborde, A., Salvagnac, L., Ventalon, V., Bedel-Pereira, E., Séguy, I., Temple-Boyer, P., Juneau, P., Izquierdo, R., and Launay, J., 2016, Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis, Biosens. Bioelectron., 79, 568–573.

[48] Orelma, H., Filpponen, I., Johansson, L.S., Laine, J., and Rojas, O.J., 2011, Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules, Biomacromolecules, 12 (12), 4311–4318.

[49] Alkasir, R.S.J., Ornatska, M., and Andreescu, S., 2012, Colorimetric paper bioassay for the detection of phenolic compounds, Anal. Chem., 84 (22), 9729–9737.

[50] Nidzworski, D., Siuzdak, K., Niedziałkowski, P., Bogdanowicz, R., Sobaszek, M., Ryl, J., Weiher, P., Sawczak, M., Wnuk, E., Goddard III, W.A., Jaramillo-Botero, A., and Ossowski, T., 2017, A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond, Sci. Rep., 7 (1), 15707.

[51] Dungchai, W., Chailapakul, O., and Henry, C.S., 2010, Use of multiple colorimetric indicators for paper-based microfluidic devices, Anal. Chim. Acta, 674 (2), 227–233.

[52] Arciuli, M., Palazzo, G., Gallone, A., and Mallardi, A., 2013, Bioactive paper platform for colorimetric phenols detection, Sens. Actuators, B, 186, 557–562.

[53] Di Fusco, M., Tortolini, C., Deriu, D., and Mazzei, F., 2010, Laccase-based biosensor for the determination of polyphenol index in wine, Talanta, 81 (1-2), 235–240.

[54] Hidayat, M.A., Puspitaningtyas, N., Gani, A.A., and Kuswandi, B., 2017, Rapid test for the determination of total phenolic content in brewed-filtered coffee using colorimetric paper, J. Food Sci. Technol., 54 (11), 3384–3390.

[55] Hidayat, M.A., Maharani, D.A., Purwanto, D.A., Kuswandi, B., and Yuwono, M., 2020, Simple and sensitive paper-based colorimetric biosensor for determining total polyphenol content of the green tea beverages, Biotechnol. Bioprocess Eng., 25 (2), 255–263.

[56] Kochana, J., Wapiennik, K., Kozak, J., Knihnicki, P., Pollap, A., Woźniakiewicz, M., Nowak, J., and Kościelniak, P., 2015, Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system, Talanta, 144, 163–170.

[57] Alkasir, R.S.J., Rossner, A., Andreescu, S., 2015, Portable colorimetric paper-based biosensing device for the assessment of bisphenol a in indoor dust, Environ. Sci. Technol., 49 (16), 9889–9897.

[58] Mazhari, B.B., Agsar, D., Prasad, M.V.N.A., 2017, Development of paper biosensor for the detection of phenol from industrial effluents using bioconjugate of Tyr-AuNps mediated by novel isolate Streptomyces tuirus DBZ39, J. Nanomater., 2017, 1352134.

[59] Turdean, G.L., 2011, Design and development of biosensors for the detection of heavy metal toxicity, Int. J. Electrochem., 2011, 343125.

[60] Jiménez-Atiénzar, M., Cabanes, J., Gandía-Herrero, F., and García-Carmona, F., 2004, Kinetic analysis of catechin oxidation by polyphenol oxidase at neutral pH, Biochem. Biophys. Res. Commun., 319 (3), 902–910.

[61] Munoz-Munoz, J.L., García-Molina, F., Molina-Alarcón, M., Tudela, J., García-Cánovas F., and Rodríguez-López, J.N., 2008, Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea, J. Agric. Food Chem., 56 (19), 9215–9224.

[62] Shaikshavali, P., Madhusudana Reddy, T., Venu Gopal, T., Venkataprasad, G., Narasimha, G., Lakshmi Narayana, A., and Hussain, O.M., 2021, Development of carbon-based nanocomposite biosensor platform for the simultaneous detection of catechol and hydroquinone in local tap water, J. Mater. Sci.: Mater. Electron., 32 (4), 5243–5258.

[63] Wee, Y., Park, S., Kwon, Y.H., Ju, Y., Yeon, K.M., Kim J., 2019, Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds, Biosens. Bioelectron., 132, 279–285.

[64] Meloni, F., Spychalska, K., Zając, D., Pilo, M.I., Zucca, A., and Cabaj, J., 2021, Application of a thiadiazole-derivative in a tyrosinase based amperometric biosensor for epinephrine detection, Electroanalysis, 33 (6), 1639–1645.

[65] Kapan, B., Kurbanoglu, S., Esenturk, E.N., Soylemez, S., and Toppare, L., 2021, Electrochemical catechol biosensor based on β-cyclodextrin capped gold nanoparticles and inhibition effect of ibuprofen, Process Biochem., 108, 80–89.

[66] Şenyurt, Ö., Eyidogan, F., Yilmaz, R., Öz, M.T., Özalp, V.C., Arica, Y., and Öktem, H.A., 2016, Development of a paper-type tyrosinase biosensor for detection of phenolic compounds, Biotechnology and Appl. Biochemistry, 62 (1), 132–136.

[67] Inroga, F.A.D., Rocha, M.O., Lavayen, V., and Arguello, J., 2018, Development of a tyrosinase-based biosensor for bisphenol A detection using gold leaf–like microstructures, J. Solid State Electrochem., 23 (6), 1659–1666.

[68] Lasmi, K., Derder, H., Kermad, A., Sam, S., Boukhalfa-Abib, H., Belhousse, S., Tighilt, F.Z., Hamdani, K., and Gabouze, N., 2018, Tyrosinase immobilization on functionalized porous silicon surface for optical monitoring of pyrocatechol, Appl. Surf. Sci., 446, 3–9.

[69] Apetrei, I.M., and Apetrei, C., 2019, Development of a novel biosensor based on tyrosinase/platinum nanoparticles/chitosan/graphene nanostructured layer with applicability in bioanalysis, Materials, 12 (7), 1009.

[70] Hashim, H.S., Fen, Y.W., Sheh Omar, N.A., Abdullah, J., Daniyal, W.E.M., and Saleviter, S., 2020, Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique, Opt. Express, 28 (7), 9738–9752.

[71] Gomes, W.E., Beatto, T.G., Marcatto, L.C., Matsubara, E.Y., Mendes, R.K., and Rosolen, J.M., 2021, Electrochemical determination of hydroquinone using a tyrosinase-based cup-stacked carbon nanotube (CSCNT)/carbon fiber felt composite electrode, Anal. Lett., 54 (17), 2700–2712.

[72] Florescu, M., and David, M., 2017, Tyrosinase-based biosensors for selective dopamine detection, Sensor, 17 (6), 1314.

[73] Mercante, L.A., Iwaki, L.E.O., Scagion, V.P., Oliveira, O.N., Mattoso, L.H.C., and Correa, D.S., 2021, Electrochemical detection of bisphenol a by tyrosinase immobilized on electrospun nanofibers decorated with gold nanoparticles, Electrochem, 2 (1), 41–49.

DOI: https://doi.org/10.22146/ijc.72607

Article Metrics

Abstract views : 2026 | views : 1196

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.