Heavy Metals Concentration in Muscle Tissue of Threatened Sharks (Rhizoprionodon acutus, Sphyrna lewini, and Squallus hemipinnis) from Binuangeun, Lebak Banten, Indonesia

https://doi.org/10.22146/ijc.72795

Suratno Suratno(1), Dwi Siswanta(2), Satriyo Krido Wahono(3), Nurul Hidayat Aprilita(4*)

(1) Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Jl. Jogja-Wonosari Km 31.5, Playen, Gunungkidul, Yogyakarta 55861, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Jl. Jogja-Wonosari Km 31.5, Playen, Gunungkidul, Yogyakarta 55861, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Metals accumulation in threatened sharks’ meat represents a global health issue. The objective of the current study was to measure the concentration of six metals (Li, Ti, Ni, Cd, As, and Pb) using ICP-MS in threatened sharks’ meat of Rhizoprionodon acutus, Squalus hemipinnis, and Sphyrna lewini from Binuangeun Fish Auction in Lebak, Banten, Indonesia. The results showed that the concentration of Ni, Li, Cd, and Pb was below the acceptable levels for food sources for human consumption, except for As concentration (more than 30 fold higher). This study showed high levels of Ti concentration in all threatened sharks' meat. Overall, this study shows that an accumulation of Ti in sharks' meat should be considered a risk to the health of seafood consumers.


Keywords


heavy metals; Rhizoprionodon acutus; Sphyrna lewini; Squalus hemipinnis; Binuangeun

Full Text:

Full Text PDF


References

[1] Dent, F., and Clarke, S., 2015, State of the global market for shark products, FAO Fisheries and Aquaculture Technical Paper No. 590, FAO, Rome, 187.

[2] Pethybridge, H., Cossa, D., and Butler, E.C.V., 2010, Mercury in 16 demersal sharks from southeast Australia: Biotic and abiotic sources of variation and consumer health implications, Mar. Environ. Res., 69 (1), 18–26.

[3] Mársico, E.T., Machado, M.E.S., Knoff, M., and São Clemente, S.C., 2007, Total mercury in sharks along the Southern Brazilian coast, Arq. Bras. Med. Vet. Zootec., 59 (6), 1593–1596.

[4] Endo, T., Kimura, O., Ohta, C., Koga, N., Kato, Y., Fujii, Y., and Haraguchi, K., 2016, Metal concentrations in the liver and stable isotope ratios of carbon and nitrogen in the muscle of silvertip shark (Carcharhinus albimarginatus) culled off Ishigaki Island, Japan: Changes with growth, PLoS One, 11 (2), e0147797.

[5] Kim, S.W., Han, S.J., Kim, Y., Jun, J.W., Giri, S.S., Chi, C., Yun, S., Kim, H.J., Kim, S.G., Kang, J.W., Kwon, J., Oh, W.T., Cha, J., Han, S., Lee, B.C., Park, T., Kim, B.Y., and Park, S.C., 2019, Heavy metal accumulation in and food safety of shark meat from Jeju island, Republic of Korea, PLoS One, 14 (3), e0212410.

[6] Escobar-Sánchez, O., Galván-Magaña, F., and Rosíles-Martínez, R., 2010, Mercury and selenium bioaccumulation in the smooth hammerhead shark, Sphyrna zygaena Linnaeus, from the Mexican Pacific Ocean, Bull. Environ. Contam. Toxicol., 84 (4), 488–491.

[7] Adel, M., Oliveri Conti, G., Dadar, M., Mahjoub, M., Copat, C., and Ferrante, M., 2016, Heavy metal concentrations in edible muscle of white cheek shark, Carcharhinus dussumieri (elasmobranchii, chondrichthyes) from the Persian Gulf: A food safety issue, Food Chem. Toxicol., 97, 135–140.

[8] Adel, M., Copat, C., Saeidi, M.R., Conti, G.O., Babazadeh, M., and Ferrante, M., 2018, Bioaccumulation of trace metals in banded Persian bamboo shark (Chiloscyllium arabicum) from the Persian Gulf: A food safety issue, Food Chem. Toxicol., 113, 198–203.

[9] Kim, S.J., Lee, H.K., Badejo, A.C., Lee, W.C., and Moon, H.B., 2016, Species-specific accumulation of methyl and total mercury in sharks from offshore and coastal waters of Korea, Mar. Pollut. Bull., 102 (1), 210–215.

[10] Lozano-Bilbao, E., Lozano, G., Gutiérrez, Á.J., Rubio, C., and Hardisson, A., 2018, Mercury, cadmium, and lead content in demersal sharks from the Macaronesian islands, Environ. Sci. Pollut. Res., 25 (21), 21251–21256.

[11] Barrera-García, A., O’Hara, T., Galván-Magaña, F., Méndez-Rodríguez, L.C., Castellini, J.M., and Zenteno-Savín, T., 2012, Oxidative stress indicators and trace elements in the blue shark (Prionace glauca) off the east coast of the Mexican Pacific Ocean, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 156 (2), 59–66.

[12] Turoczy, N.J., Laurenson, L.J.B., Allinson, G., Nishikawa, M., Lambert, D.F., Smith, C., Cottier, J.P.E., Irvine, S.B., and Stagnitti, F., 2000, Observations on metal concentrations in three species of shark (Deania calcea, Centroscymnus crepidater, and Centroscymnus owstoni) from Southeastern Australian waters, J. Agric. Food Chem., 48 (9), 4357–4364.

[13] McMeans, B.C., Borgå, K., Bechtol, W.R., Higginbotham, D., and Fisk, A.T., 2007, Essential and non-essential element concentrations in two sleeper shark species collected in arctic waters, Environ. Pollut., 148 (1), 281–290.

[14] Bosch, A.C., O’Neill, B., Sigge, G.O., Kerwath, S.E., and Hoffman, L.C., 2016, Heavy metals in marine fish meat and consumer health: A review, J. Sci. Food Agric., 96 (1), 32–48.

[15] Oktaviany, S., Kurniawan, W., Sjafrie, N.D.M., Triyono, T., and Suratno, S., 2019, Pendataan dan Aspek Biologi Ikan Hiu dan Pari Apendik CITES dan Terancam Punah di Indonesia, Final Report, Research Center for Oceanography-LIPI, Jakarta, Indonesia.

[16] Rigby, C.L., Dulvy, N., Carlson, J., Fernando, D., Fordham, S., Jabado, R.W., Liu, K.M., Marshall, A., Pacoureau, N., Romanov, E., Sherley, R.B., and Winker, H., 2019, Sphyrna lewini, IUCN Red List Threatened Species, 2019, e.T39385A2918526.

[17] Rigby, C.L., Harry, A.V., Pacoureau, N., Herman, K., Hannan, L., and Derrick, D., 2020, Rhizoprionodon acutus, IUCN Red List Threatened Species, 2020, e.T41850A68642326.

[18] Dulvy, N.K., Bineesh, K.K., Cheok, J., Dharmadi, Finucci, B., Sherman, C.S., and VanderWright, J., 2020, Squalus hemipinnis, IUCN Red List Threatened Species, 2020, e.T161410A124480327.

[19] Bergés-Tiznado, M.E., Vélez, D., Devesa, V., Márquez-Farías, J.F., and Páez-Osuna, F., 2021, Arsenic in tissues and prey species of the scalloped hammerhead (Sphyrna lewini) from the SE Gulf of California, Arch. Environ. Contam. Toxicol., 80 (3), 624–633.

[20] Adel, M., Mohammadmoradi, K., and Ley-Quiñonez, C.P., 2017, Trace element concentrations in muscle tissue of milk shark, (Rhizoprionodon acutus) from the Persian Gulf, Environ. Sci. Pollut. Res., 24 (6), 5933–5937.

[21] Ong, M.C., and Gan, S.L., 2017, Assessment of metallic trace elements in the muscles and fins of four landed elasmobranchs from Kuala Terengganu Waters, Malaysia, Mar. Pollut. Bull., 124 (2), 1001–1005.

[22] Mohammed, A., and Mohammed, T., 2017, Mercury, arsenic, cadmium and lead in two commercial shark species (Sphyrna lewini and Caraharinus porosus) in Trinidad and Tobago, Mar. Pollut. Bull., 119 (2), 214–218.

[23] Anton Paar, 2020, High-throughput Digestion of Food and Other Organic Samples with Rotor 41HVT56, Application Reports, Anton Paar GmbH, Graz, Austria.

[24] Murugesan, S., Surekar, B., Mandal, S., Pandey, B., and Oulkar, D., 2020, Determination of trace heavy metals in spices using single quadrupole ICP-MS, Application Note 44476, Thermo Fischer Scientific.

[25] R Core Team, 2021, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Viena, Austria.

[26] Boldrocchi, G., Monticelli, D., Omar, Y.M., and Bettinetti, R., 2019, Trace elements and POPs in two commercial shark species from Djibouti: Implications for human exposure, Sci. Total Environ., 669, 637–648.

[27] Boldrocchi, G., Spanu, D., Mazzoni, M., Omar, M., Baneschi, I., Boschi, C., Zinzula, L., Bettinetti, R., and Monticelli, D., 2021, Bioaccumulation and biomagnification in elasmobranchs: A concurrent assessment of trophic transfer of trace elements in 12 species from the Indian Ocean, Mar. Pollut. Bull., 172, 112853.

[28] Bergés-Tiznado, M.E., Márquez-Farías, F., Lara-Mendoza, R.E., Torres-Rojas, Y.E., Galván-Magaña, F., Bojórquez-Leyva, H., and Páez-Osuna, F., 2015, Mercury and selenium in muscle and target organs of scalloped hammerhead sharks Sphyrna lewini of the SE gulf of California: Dietary intake, molar ratios, loads, and human health risks, Arch. Environ. Contam. Toxicol., 69 (4), 440–452.

[29] Coiraton, C., Amezcua, F., and Ketchum, J.T., 2020, New insights into the migration patterns of the scalloped hammerhead shark Sphyrna lewini based on vertebral microchemistry, Mar. Biol., 167 (5), 58.

[30] Coiraton, C., and Amezcua, F., 2020, In utero elemental tags in vertebrae of the scalloped hammerhead shark Sphyrna lewini reveal migration patterns of pregnant females, Sci. Rep., 10 (1), 1799.

[31] Hauser-Davis, R.A., Rocha, R.C.C., Saint’Pierre, T.D., and Adams, D.H., 2021, Metal concentrations and metallothionein metal detoxification in blue sharks, Prionace glauca L. from the Western North Atlantic Ocean, J. Trace Elem. Med. Biol., 68, 126813.

[32] Storelli, M.M., Giacominelli-Stuffler, R., and Marcotrigiano, G., 2002, Mercury accumulation and speciation in muscle tissue of different species of sharks from Mediterranean Sea, Italy, Bull. Environ. Contam. Toxicol., 68 (2), 201–210.

[33] Storelli, M.M., Ceci, E., Storelli, A., and Marcotrigiano, G.O., 2003, Polychlorinated biphenyl, heavy metal and methylmercury residues in hammerhead sharks: Contaminant status and assessment, Mar. Pollut. Bull., 46 (8), 1035–1039.

[34] Ju, Y.R., Chen, C.F., Chen, C.W., Wang, M.H., Joung, S.J., Yu, C.J., Liu, K.M., Tsai, W.P., Vanson Liu, S.Y., and Dong, C., 2021, Profile and consumption risk assessment of trace elements in megamouth sharks (Megachasma pelagios) captured from the Pacific Ocean to the east of Taiwan, Environ. Pollut., 269, 116161.

[35] Bouchoucha, M., Chekri, R., Leufroy, A., Jitaru, P., Millour, S., Marchond, N., Chafey, C., Testu, C., Zinck, J., Cresson, P., Mirallès, F., Mahe, A., Arnich, N., Sanaa, M., Bemrah, N., and Guérin, T., 2019, Science of the Total Environment Trace element contamination in fish impacted by bauxite red mud disposal in the Cassidaigne canyon (NW French Mediterranean), Sci. Total Environ., 690, 16–26.

[36] Buettner, K.M., and Valentine, A.M., 2012, Bioinorganic chemistry of titanium, Chem. Rev., 112 (3), 1863–1881.

[37] Corsi, I., Bergami, E., and Grassi, G., 2020, Behavior and bio-interactions of anthropogenic particles in marine environment for a more realistic ecological risk assessment, Front. Environ. Sci., 8, 60.

[38] Shi, W., Han, Y., Guo, C., Zhao, X., Liu, S., Su, W., Zha, S., Wang, Y., and Liu, G., 2017, Immunotoxicity of nanoparticle nTiO2 to a commercial marine bivalve species, Tegillarca granosa, Fish Shellfish Immunol., 66, 300–306.

[39] Cunha, R.L.D.D., and de Brito-Gitirana, L., 2020, Effects of titanium dioxide nanoparticles on the intestine, liver, and kidney of Danio rerio, Ecotoxicol. Environ. Saf., 203, 111032.

[40] López-Mayán, J.J., del-Ángel-Monroy, S., Peña-Vázquez, E., Barciela-Alonso, M.C., Bermejo-Barrera, P., and Moreda-Piñeiro, A., 2022, Titanium dioxide nanoparticles assessment in seaweeds by single particle inductively coupled plasma – Mass spectrometry, Talanta, 236, 122856.

[41] Oya-Silva, L.F., Vicari, T., Rodrigo Disner, G., Lirola, J.R., Klingelfus, T., Gonçalves, H.D.L.S., Leite, T.P.B., Calado, S.L.D.M., Voigt, C.L., Silva de Assis, H.C., and Cestari, M.M., 2021, Tissue-specific genotoxicity and antioxidant imbalance of titanium dioxide nanoparticles (NPTiO2) and inorganic lead (PbII) in a neotropical fish species, Environ. Toxicol. Pharmacol., 82, 103551.

[42] Baharlooeian, M., Kerdgari, M., and Shimada, Y., 2021, Ecotoxicological effects of TiO2 nanoparticulates and bulk Ti on microalgae Chaetoceros muelleri, Environ. Technol. Innovation, 23, 101720.

[43] Auguste, M., Lasa, A., Pallavicini, A., Gualdi, S., Vezzulli, L., and Canesi, L., 2019, Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph, Sci. Total Environ., 670, 129–137.

[44] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2010, Carbon Black, Titanium Dioxide and Talc, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 93, International Agency for Research on Cancer, Lyon, France.

[45] Hauser-Davis, R.A., Pereira, C.F., Pinto, F., Torres, J.P.M., Malm, O., and Vianna, M., 2020, Mercury contamination in the recently described Brazilian white-tail dogfish Squalus albicaudus (Squalidae, Chondrichthyes), Chemosphere, 250, 126228.

[46] Shipley, O.N., Lee, C.S., Fisher, N.S., Sternlicht, J.K., Kattan, S., Staaterman, E.R., Hammerschlag, N., and Gallagher, A.J., 2021, Metal concentrations in coastal sharks from The Bahamas with a focus on the Caribbean Reef shark, Sci. Rep., 11 (1), 218.

[47] National Agency of Drug and Food Control of the Republic of Indonesia (BPOM), 2018, Batas Maksimum Cemaran Logam Berat dalam Pangan Olahan, Regulation of the Drug and Food Control Agency No. 5, Jakarta, Indonesia.

[48] Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission, 2016, Codex Alimentarius: Working Document for Information and Use in Discussions Related to Contaminants and Toxin in GSCTFF, Codex Committee on Contaminants in Foods, 2016 (CF/10 INF/1), World Health Organization: Food and Agriculture Organization of the United Nations, Rome.

[49] Fahmi, F., and Sentosa, A.A., 2017, Biology and fisheries aspects of western longnose spurdog, Squalus edmundsi from the Eastern Indian Ocean, Indonesia, Biodiversitas, 18 (4), 1714–1722.

[50] Taylor, V., Goodale, B., Raab, A., Schwerdtle, T., Reimer, K., Conklin, S., Karagas, M.R., and Francesconi, K.A., 2017, Human exposure to organic arsenic species from seafood, Sci. Total Environ., 580, 266–282.



DOI: https://doi.org/10.22146/ijc.72795

Article Metrics

Abstract views : 4276 | views : 3171


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.