Optimizing Rice Husk Silica Mass and Sonication Time for a More Efficient and Environmentally Friendly Synthesis of SBA-15

https://doi.org/10.22146/ijc.73258

Suyanta Suyanta(1*), Mudasir Mudasir(2)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


By optimizing rice husk silica mass and sonication time, SBA-15 was successfully synthesized in a more efficient and environmentally friendly way. The solution of Pluronic P-123 was mixed with the solution containing NaOH and various masses of rice husk silica (4–12 g), followed by sonication for a certain time (30–150 min). The mixture was filtered and washed with distilled water and ethanol until neutral, then dried at 110 °C for 2 h and calcined at 500 °C for 6 h. The results showed that the optimal mass of rice husk silica was 8 g, while the optimal sonication time was 30 min. The product has a cylindrical pore shape with good crystallinity and pore structure regularity. The specific surface area (SBET), the pore diameter (DBJH), the specific pore volume (VBJH), and the wall thickness (WT) of the product were 601 m2 g–1, 4.76 nm, 0.88 mL g–1, and 5.02 nm, respectively. These results are not considerably different from the porosity of SBA-15, synthesized previously using conventional hydrothermal techniques from various silica sources. In addition, it is also comparable to the porosity of SBA-15 produced from TEOS by sonochemical methods as well as with commercial SBA-15.


Keywords


rice husk silica; SBA-15; optimization; mass; sonication time

Full Text:

Full Text PDF


References

[1] Sun, L.B., Liu, X.Q., and Zhou, H.C., 2015, Design and fabrication of mesoporous heterogeneous basic catalysts, Chem. Soc. Rev., 44 (15), 5092–5147.

[2] Sabbaghi, A., Lam, F.L.Y., and Hu, X.J., 2015, High Zr-loaded SBA-15 cobalt catalyst for efficient NOx reduction in lean-burn exhaust, Appl. Catal., A, 508, 25–36.

[3] Lai, Y.T., Chen, T.C., Lan, Y.K., Chen, B.S., You, J.H.,Yang, C.M., Lai, N.C., Wu, J.H., and Chen, C.S., 2014, Pt/SBA-15 as a highly efficient catalyst for catalytic toluene oxidation, ACS Catal., 4 (11), 3824–3836.

[4] Jiang, W.J., Yin, Y., Liu, X.Q., Yin, X.Q., Shi, Y.Q., and Sun, L.B., 2013, Fabrication of supported cuprous sites at low temperatures: an efficient, controllable strategy using vapor-induced reduction, J. Am. Chem. Soc., 135 (22), 8137–8140.

[5] Buonomenna, M.G., Golemme, G., Tone, C.M., De Santo, M.P., Ciuchi, F., and Perrotta, E., 2013, Amine-functionalized SBA-15 in poly(styrene-b-butadiene-b-styrene) (SBS) yields permeable and selective nanostructured membranes for gas separation, J. Mater. Chem. A, 1 (38), 11853–11866.

[6] Yin, Y., Tan, P., Liu, X.Q., Zhu, J., and Sun, L.B., 2014, Constructing a confined space in silica nanopores: an ideal platform for the formation and dispersion of cuprous sites, J. Mater. Chem. A, 2 (10), 3399–3406.

[7] Yin, Y., Zhu, J., Liu, X.Q., Tan, P., Xue, D.M., Xing, Z.M., and Sun, L.B., 2016, Simultaneous fabrication of bifunctional Cu(I)/Ce(IV) sites in silica nanopores using a guests-redox strategy, RSC Adv., 6 (74), 70446–70451.

[8] Vavsari, V.F., Ziarani, G.M., and Badiei, A., 2015, The role of SBA-15 in drug delivery, RSC Adv., 5 (111), 91686–91707.

[9] Karnopp, J.C.F., Cardoso, T.F.M., Gonçalves, D., Carollo, A.R.H., de Castro, G.R., Duarte, A.P., and Martines, M.A.U., 2020, Preparation of the Rutin-SBA-16 drug delivery system, J. Biomater. Nanobiotechnol., 11 (1), 1–13.

[10] Wang, J., Yang, M., Lu, Y., Jin, Z., Tan, L., Gao, H., Fan, S., Dong, W., and Wang, G., 2016, Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials, Nano Energy, 19, 78–87.

[11] Angioni, S., Villa, D.C., Cattaneo, A.S., Mustarelli, P., and Quartarone, E., 2015, Influence of variously functionalized SBA-15 fillers on conductivity and electrochemical properties of PBI composite membranes for high temperature polymer fuel cells, J. Power Sources, 294, 347–353.

[12] Pizzoccaro-Zilamy, M.A., Huiskes, C., Keim, E.G., Sluijter, S.N., van Veen, H., Nijmeijer, A., Winnubst, L., and Luiten-Olieman, M.W.J., 2019, New generation of mesoporous silica membranes prepared by a Stöber-solution pore-growth approach, ACS Appl. Mater. Interfaces, 11 (20), 18528–18539.

[13] Yang, J., Lin, G.S., Mou, C.Y., and Tung, K.L., 2020, Mesoporous silica thin membrane with tunable pore size for ultrahigh permeation and precise molecular separation, ACS Appl. Mater. Interfaces, 12 (6), 7459–7465.

[14] Taweekarn, T., Wongniramaikul, W., Limsakul, W., Sriprom, W., Phawachalotorn, C., and Choodum, A., 2020, A novel colorimetric sensor based on modified mesoporous silica nanoparticles for rapid on-site detection of nitrite, Microchim. Acta, 187 (12), 643.

[15] Hassan, H.M., Ab Rahman, N.B., and Jalil, M.N., 2016, Mesoporous silica electrochemical sensors for the detection of ascorbic acid and uric acid, Malays. J. Anal. Sci., 20 (2), 351–357.

[16] Linares, N., Silvestre-Albero, A.M., Serrano, E., Silvestre-Albero, J., and García-Martínez, J., 2014, Mesoporous materials for clean energy technologies, Chem. Soc. Rev., 43 (22), 7681–7717.

[17] da Silva, F.C.M., Costa, M.J.S., da Silva, L.K.R., Batista, A.M., and da Luz, G.E., 2019, Functionalization methods of SBA-15 mesoporous molecular sieve: A brief overview, SN Appl. Sci., 1 (6), 654.

[18] Selvakannan, P.R., Mantri, K., Tardio, J., and Bhargava, S.K., 2013, High surface area Au–SBA-15 and Au–MCM-41 materials synthesis: Tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls, J. Colloid Interface Sci., 394, 475–484.

[19] Costa, J.A.S., de Jesus, R.A., Santos, D.O., Mano, J.F., Romão, L.P.C., and Paranhos, C.M., 2020, Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials, Microporous Mesoporous Mater., 291, 109698.

[20] Gobara, H.M., 2016, Synthesis, mechanisms and different applications of mesoporous materials based on silica and alumina, Egypt. J. Chem., 59 (2), 163–194.

[21] Zhang, H., Tang, C., Lv, Y., Sun, C., Gao, F., Dong, L., and Chen, Y., 2012, Synthesis, characterization, and catalytic performance of copper-containing SBA-15 in the phenol hydroxylation, J. Colloid Interface Sci., 380 (1), 16–24.

[22] dos Santos, S.M.L., Nogueira, K.A.B., de Souza Gama, M., Lima, J.D.F., da Silva Júnior, I.J., and de Azevedo, D.C.S., 2013, Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules, Microporous Mesoporous Mater., 180, 284–292.

[23] Schwanke, A.J., Favero, C., Balzer, R., Bernardo-Gusmão, K., and Pergher, S.B.C., 2018, SBA-15 as a support for nickel-based catalysts for polymerization reactions, J. Braz. Chem. Soc., 29 (2), 328–333.

[24] Adrover, M.E., Pedernera, M., Bonne, M., Lebeau, B., Bucalá, V., and Gallo, L., 2020, Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate, Saudi Pharm. J., 28 (1), 15–24.

[25] Thahir, R., Wahab, A.W., La Nafie, N., and Raya, I., 2019, Synthesis of high surface area mesoporous silica SBA-15 by adjusting hydrothermal treatment time and the amount of polyvinyl alcohol, Open Chem., 17 (1), 963–971.

[26] Juárez-Serrano, N., Berenguer, D., Martínez-Castellanos, I., Blasco, I., Beltrán, M., and Marcilla, A., 2021, Effect of reaction time and hydrothermal treatment time on the textural properties of SBA-15 synthesized using sodium silicate as a silica source and its efficiency for reducing tobacco smoke toxicity, Catalysts, 11 (7), 808.

[27] Lázaro, A.L., Rodríguez-Valadez, F.J., López, J.J.M., and Espejel-Ayala, F., 2020, SBA-15 synthesis from sodium silicate prepared with sand and sodium hydroxide, Mater. Res. Express, 7, 045503.

[28] Norsurayaa, S., Fazlenaa, H., and Norhasyimia, R., 2016, Sugarcane bagasse as a renewable source of silica to synthesize Santa Barbara Amorphous-15 (SBA-15), Procedia Eng., 148, 839–846.

[29] Nguyen, Q.N.K., Yen, N.T., Hau, N.D., and Tran, H.L., 2020, Synthesis and characterization of mesoporous silica SBA-15 and ZnO/SBA-15 photocatalytic materials from the ash of brickyards, J. Chem., 2020, 8456194.

[30] Wang, J., Fang, L., Cheng, F., Duan, X., and Chen, R., 2013, Hydrothermal synthesis of SBA-15 using sodium silicate derived from coal gangue, J. Nanomater., 2013, 352157.

[31] Razak, H., Abdullah, N., Setiabudi, H.N., Yee, C.S., and Ainirazali, N., 2019, Refluxed synthesis of SBA-15 using sodium silicate extracted from oil palm ash for dry reforming of methane, Mater. Today: Proc., 19, 1363–1372.

[32] Rodrigues, J.J., Fernandes, F.A.N., and Rodrigues, M.G.F., 2018, Co/Ru/SBA-15 catalysts synthesized with rice husk ashes as silica source applied in the Fischer-Tropsch synthesis, Braz. J. Pet. Gas, 12 (3), 169–179.

[33] Liou, T.H., Tseng, Y.K., Liu, S.M., Lin, Y.T., Wang, S.Y., and Liu, R.T., 2021, Green synthesis of mesoporous graphene oxide/silica nanocomposites from rice husk ash: Characterization and adsorption performance, Environ. Technol. Innovation, 22, 101424.

[34] Watthanachai, C., Ngamcharussrivichai, C., and Pengprecha, S., 2018, Synthesis and characterization of bimodal mesoporous silica derived from rice husk ash, Eng. J., 23 (1), 25–34.

[35] Fernandes, L.J., Calheiro, D., Sánchez, F.A.L., Camacho, A.L.D., de Campos Rocha, T.L.A., Moraes, C.A.M., and de Sousa, V.C., 2017, Characterization of silica produced from rice husk ash: Comparison of purification and processing methods, Mater. Res., 20 (Suppl. 2), 512–518.

[36] Hossain, S.K.S., Mathur, L., and Roy, P.K., 2018, Rice husk/rice husk ash as an alternative source of silica in ceramics: A review, J. Asian Ceram. Soc., 6 (4), 299–313.

[37] Xu, K., Sun, Q., Guo, Y., and Dong, S., 2013, Effects on modifiers on the hydrophobicity of SiO2 films from nano-husk ash, Appl. Surf. Sci., 276, 796–801.

[38] Laborte, A.G., Velasco, M.L., Wang, H., Behura, D., Pagnchak, M.R., Singh, H.N., Wardana, I.P., Vilayvong, S., and Shah, H., 2017, Release and adoption of improved cultivars in South and Southeast Asia: Rice, The 9th ASAE International Conference: Transformation in Agricultural and Food Economy in Asia, Bangkok, Thailand, 11-13 January 2017, 1455–1469.

[39] Barrera, D., Villarroel-Rocha, J., Marenco, L., Oliva, M.I., and Sapag, K., 2011, Non-hydrothermal synthesis of cylindrical mesoporous materials: Influence of the surfactant/silica molar ratio, Adsorpt. Sci. Technol., 29 (10), 975–988.

[40] Yang, Q.Y., Zhu, H., Tian, L., Xie, S.H., Pei, Y., Li, H., Li, H.X., Qiao, M.H., and Fan, K.N., 2009, Preparation and characterization of Au-In/APTMS-SBA-15 catalysts for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol, Appl. Catal., A, 369 (1-2), 67–76.

[41] Mollakarimi Dastjerdi, N., and Ghanbari, M., 2020, Ultrasound-promoted green approach for the synthesis of multisubstituted pyridines using stable and reusable SBA-15@ADMPT/H5PW10V2O40 nanocatalyst at room temperature, Green Chem. Lett. Rev., 13 (3), 192–205.

[42] Prabhu, A., Sudha, V., Pachamuthu, M.P., Sundaravel, B., and Bellucci, S., 2022, Ultrasonic synthesis of Al-SBA-15 nanoporous catalyst for t-butylation of ethylbenzene, J. Nanomater., 2022, 2512223.

[43] Li, J.Z., and Bai, X.F., 2017, Ultrasonic synthesis of Pd/SBA-15 catalyst for Suzuki-Miyaura coupling, Adv. Eng. Res., 136, 454–457.

[44] Sun, S., Wang, S., Wang, P., Wu, Q., and Fang, S., 2015, Ultrasound assisted morphological control of mesoporous silica with improved lysozyme adsorption, Ultrason. Sonochem., 23, 21–25.

[45] Ramos, J.M., Wang, J.A., Flores, S.O., Chen, L., Arellano, U., Noreña, L.E., González, J., and Navarrete, J., 2021, Ultrasound-assisted hydrothermal synthesis of V2O5/Zr-SBA-15 catalysts for production of ultralow sulfur fuel, Catalysts, 11 (4), 408.

[46] Yusof, N.S.M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., and Ashokkumar, M., 2016, Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications, Ultrason. Sonochem., 29, 568–576.

[47] Alshabanat, M., Al-Arrash, A., and Mekhamer, W., 2013, Polystyrene/montmorillonite nanocomposites: study of the morphology and effects of sonication time on thermal stability, J. Nanomater., 2013, 650725.

[48] Shojaeiarani, J., Bajwa, D., and Holt, G., 2020, Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion, Nanocomposites, 6 (1), 41–46.

[49] Ali, F., Reinert, L., Lévêque, J.M., Duclaux, L., Muller, F., Saeed, S., and Shah, S.S., 2014, Effect of sonication conditions: solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles, Ultrason. Sonochem., 21 (3), 1002–1009.

[50] Jokar, A., Azizi, M.H., Esfehani, Z.H., and Abbasi, S., 2017, Effects of ultrasound time on the properties of methylcellulose-montmorillonite films, Int. Nano Lett., 7 (1), 59–68.

[51] Chaeronpanich, M., Nanta-ngern, A., and Limtrakul, J., 2007, Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique, Mater. Lett., 61 (29), 5153–5156.

[52] Banoth, S., Babu, V.S., Raghavendra, G., Rakesh, K., and Ojha, S., 2021, Sustainable thermochemical extraction of amorphous silica from biowaste, Silicon, 2021, s00240-021-01293-z.

[53] Yener, H.B., and Helvacı, Ş.Ş., 2015, Effect of synthesis temperature on the structural properties and photocatalytic activity of TiO2/SiO2 composites synthesized using rice husk ash as a SiO2 source, Sep. Purif. Technol., 140, 84–93.

[54] Ma, X., Zhou, B., Gao, W., Qu, Y., Wang, L., Wang, Z., and Zhu, Y., 2012, A recyclable method for production of pure silica from rice hull ash, Powder Technol., 217, 497–501.

[55] Zemnukhova, L.A., Panasenko, A.E., Artem'yanov, A.P., and Tsoy, E.A., 2015, Dependence of porosity of amorphous silicon dioxide prepared from rice straw on plant variety, BioResources, 10 (2), 3713–3723.

[56] Palanivelu, R., Padmanaban, P., Sutha, S., and Rajendran, V., 2014, Inexpensive approach for production of high-surface-area silica nanoparticles from rice hulls biomass, IET Nanobiotechnol., 8 (4), 290–294.

[57] Meléndez-Ortiz, H.I., Puente-Urbina, B., Castruita-de Leon, G., Mata-Padilla, J.M., and Garcia-Uriostegui, L., 2016, Synthesis of spherical SBA-15 mesoporous silica. Influence of reaction conditions on the structural order and stability, Ceram. Int., 42 (6), 7564–7570.

[58] González, J., Wang, J.A., Chen, L., Manríquez, M., Salmones, J., Limas, R., and Arellano, U., 2018, Quantitative determination of oxygen defects, surface Lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts, J. Solid State Chem., 263, 100–114.

[59] Alavi, S., Hosseini-Monfared, H., and Siczek, M., 2013, A new manganese(III) complex anchored onto SBA-15 as efficient catalyst for selective oxidation of cycloalkanes and cyclohexene with hydrogen peroxide, J. Mol. Catal. A: Chem., 377, 16–28.

[60] Hashemikia, S., Hemmatinejad, N., Ahmadi, E., and Montazer, M., 2015, Optimization of tetracycline hydrochloride adsorption on amino modified SBA-15 using response surface methodology, J. Colloid Interface Sci., 443, 105–114.

[61] Gonzalez, G., Sagarzazu, A., Cordova, A. Gomes, M.E., Salas, J., Contreras, L., Noris-Suarez, K., and Lascano, L., 2018, Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery, Microporous Mesoporous Mater., 256, 251–265.

[62] Andrade, G.F., Gomide, V.S., da Silva Júnior, A.C., Goes, A.M., and de Sousa, E.M.B., 2014, An in situ synthesis of mesoporous SBA-16/hydroxyapatite for ciprofloxacin release: in vitro stability and cytocompatibility studies, J. Mater. Sci.: Mater. Med., 25 (11), 2527–2540.

[63] Sheng, Y., Tang, X., Peng, E., and Xue, J., 2013, Graphene oxide based fluorescent nanocomposites for cellular imaging, J. Mater. Chem. B, 14 (4), 512–521.

[64] On, T.D., Zaidi, S.M.J., and Kaliaguine, S., 1998, Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions, Microporous Mesoporous Mater., 22 (1-3), 211–224.

[65] Shirvanimoghaddam, K., Balaji, K.V., Yadav, R., Zabihi, O., Ahmadi, M., Adetunji, P., Naebe, M., 2021, Balancing the toughness and strength in polypropylene composites, Composites, Part B, 223, 109121.

[66] Ramirez Mendoza, H., Jordens, J., Valdez Lancinha Pereira, M., Lutz, C., and Van Gerven, T., 2020, Effects of ultrasonic irradiation on crystallization kinetics, morphological and structural properties of zeolite FAU, Ultrason. Sonochem., 64, 105010.

[67] Chagas, J.S., Almeida, J.N.S., Pereira, A.C.L., Medeiros, E.S., Silva Guedes de Lima, B.A., Ferreira e Santos, A.S., Oliveira, J.E., and Mattoso, L.H.C., 2019, Effect of sonication time interval on the size and crystallinity degree of cellulose nanocrystals, Proceedings of the 18th Brazilian Material Research Society Meeting, Rio de Janeiro, Brazil, 22-26 September 2019.

[68] Thielemann, J.P., Girgsdies, F., Schlögl, R., and Hess, C., 2011, Pore structure and surface area of silica SBA-15: Influence of washing and scale-up, Beilstein J. Nanotechnol., 2, 110–118.

[69] Deryło-Marczewska, A., Zienkiewicz-Strzałka, M., Skrzypczyńska, K., Świątkowski, A., and Kuśmierek, K., 2016, Evaluation of the SBA-15 materials ability to accumulation of 4-chlorophenol on carbon paste electrode, Adsorption, 22 (4), 801–812.

[70] Mayani, S.V., Mayani, V.J., and Kim, S.W., 2014, SBA-15 supported Fe, Ni, Fe-Ni bimetallic catalysts for wet oxidation of bisphenol-A, Bull. Korean Chem. Soc., 35 (12), 3535.

[71] Pérez-Vidal, H., Lunagómez, M.A., Pacheco, J.G., Torres-Torres, J.G., De la Cruz-Romero, D., Cuauhtémoc-López, I., and Beltramini, J.N., 2018, Co/SBA-15 modified with TMB in the degradation of phenol, J. Appl. Res. Technol, 16 (5), 422–436.

[72] Lin, D., Huang, Y., Yang, Y., Long, X., Qin, W., Chen, H., Zhang, Q., Wu, Z., Li, S., Wu, D., Hu, L., Zhang, X., 2018, Preparation and characterization of highly ordered mercapto-modified bridged silsesquioxane for removing ammonia-nitrogen from water, Polymers, 10 (8), 819.

[73] Schwanke, A.J., Favero, C., Balzer, R., Bernardo-Gusmão, K., and Pergher, S.B.C., 2018, SBA-15 as a support for nickel-based catalysts for polymerization reactions, J. Braz. Chem. Soc., 29 (2), 328–333.

[74] Liou, T.H., and Liou, Y.H., 2021, Utilization of rice husk ash in the preparation of graphene-oxide-based mesoporous nanocomposites with excellent adsorption performance, Materials, 14 (5), 1214.

[75] Mansour, S., Akkari, R., Chaabene, S.B., and Zina, M.S., 2020, Effect of surface site defects on photocatalytic properties of BiVO4/TiO2 heterojunction for enhanced methylene blue degradation, Adv. Mater. Sci. Eng., 2020, 6505301.

[76] Kruatim, J., Jantasee, S., and Jongsomjit, B., 2016, Improvement of cobalt dispersion on Co/SBA-15 and Co/SBA-16 catalysts by ultrasound and vacuum treatments during post-impregnation step, Eng. J., 21 (1), 17–28.

[77] Ruchomski, L., Pikula, T., Kamiński, D., Słowik, G., and Kosmulski, M., 2022, Synthesis and characterization of a novel composites derived from SBA-15 mesoporous silica and iron pentacarbonyl, J. Colloid Interface Sci., 608, 2421–2429.

[78] Palani, A., Wu, H.Y., Ting, C.C., Vetrivel, S., Shanmugapriya, K., Chiang, A.S.T., and Kao, H.M., 2010, Rapid temperature-assisted sonochemical synthesis of mesoporous silica SBA-15, Microporous Mesoporous Mater., 131 (1-3), 385–392.



DOI: https://doi.org/10.22146/ijc.73258

Article Metrics

Abstract views : 1717 | views : 955


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.