Low-Calorie Coal Liquefaction Products as an Alternative Fuel Oil


Yulfi Zetra(1*), Anis Febriati(2), Dyah Nirmala(3), Rafwan Year Perry Burhan(4), Arizal Firmansyah(5), Zjahra Vianita Nugraheni(6)

(1) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia
(2) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia
(3) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia
(4) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia Politeknik Energi and Mineral Akamigas, Jl. Gajah Mada no 38, Cepu 58315, Indonesia
(5) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia
(6) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia
(*) Corresponding Author


Liquefaction of low-rank coal has been done to optimize the utilization of low-rank coal, which is less economical for obtaining alternative fuel oil. Coal samples were taken from the Bukit Pinang coal mine, Samarinda Ulu, East Kalimantan. Coal was liquefied using the NEDOL procedure at PUSPITEK, Serpong, South Tangerang, Indonesia. This Bukit Pinang coal liquefaction produces five fractions consisting of Naphta, Light Oil (LO), Middle Oil (MO), Heavy Oil (HO), and Coal Liquid Bottom (CLB) fractions. The liquefaction yield was dominated by the HO and CLB fractions (> 50% by weight). The naphtha, MO and LO fractions were fractionated using SiO2 GF254 Thin Layer Chromatography (TLC) plate. It produced aliphatic and aromatic hydrocarbon fractions. Aliphatic hydrocarbon fractions were analyzed using a Gas Chromatography-Mass Spectrometer (GC-MS), while the aromatic hydrocarbon fractions were not analyzed. Mass spectrum studies showed that the components consisted of n-alkanes, isoalkanes (branched alkanes), cycloalkanes and alkyl cycloalkanes. The aliphatic hydrocarbon components resulting from the liquefaction of low-rank coal showed its equivalence with the components that make up fuel oil. Therefore, this coal liquefaction can be suggested as an optimization for low-rank coal, which is less economical.


coal liquefaction; Naphtha; Light Oil (LO); Middle Oil (MO); aliphatic hydrocarbon


[1] British Petroleum, 2021, Statistical Review of World Energy 2021, BP Energy Outlook 2021, 70th Ed., 8–20.

[2] Widyastuti, N.L., and Nugroho, H., 2020, Dampak Covid-19 terhadap industri minyak dan gas bumi: Rekomendasi kebijakan untuk Indonesia, Jurnal Perencanaan Pembangunan, 4 (2), 166–176.

[3] Kuncoro, H., 2011, The Volatility of world crude oil prices, Econ. J. Emerging Market, 1 (3), 1–15.

[4] Song, Y., Chen, B., Wang, X.Y., and Wang, P.P., 2022, Defending global oil price security: Based on the perspective of uncertainty risk, Energy Strategy Rev., 41, 100858.

[5] Gallagher, K.S., Bhandary, R., Narassimhan, E., and Nguyen, Q.T., 2021, Banking on coal? Drivers of demand for Chinese overseas investments in coal in Bangladesh, India, Indonesia and Vietnam, Energy Res. Soc. Sci., 71, 101827.

[6] Xu, Y.Y., Sun, Z.Q., Fan, X., Ma, F.Y., Kuznetsov, P.N., Chen, B., and Wang, J.F., 2021, Building methodology for evaluating the effects of direct coal liquefaction using coal structure-chemical index, Fuel, 305, 121568.

[7] Arinaldo, D., and Adiatama, J.C., 2019, Dinamika Batu Bara Indonesia: Menuju Transisi Energi yang Adil, Institute for Essential Services Reform (IESR), Jakarta, Indonesia.

[8] Soelistijo, U.W., Wibowo, A.P., and Abdullah, M., 2013, The contribution of low rank coal liquefaction in Indonesian economy in 2025, Procedia Earth Planet. Sci., 6, 301–310.

[9] Zhang, G., Qiao, X., Miao, X., Hong, J., and Zheng, J., 2013, Effect of coal to liquid fuel on combustion and emission in a heavy-duty diesel engine, Proc. Inst. Mech. Eng., Part D, 227 (4), 481–489.

[10] Feng, Z., Bai, Z., Hou, R., Guo, Z., Kong, L., Bai, J., and Li, W., 2021, Co-pyrolysis of mild liquefaction solid product and low rank coals: Products distributions, products properties and interactions, Fuel, 306, 121719.

[11] Li, X., Li, L., Li, B., Feng, J., and Li, W., 2017, Product distribution and interactive mechanism during co-pyrolysis of a subbituminous coal and its direct liquefaction residue, Fuel, 199, 372–379.

[12] Bai, Z., Huang, P., Wang, L., Cao, H., Zhang, X., and Li, G., 2021, A study on upgrading light coal tar to aerospace fuel, J. Fuel Chem. Technol., 49 (5), 694–702.

[13] Liu, H., Jiang, S.S., Guo, H.S., Han, S., Yang, C., and Jiang, J.Z., 2016, A new kind of pour point depressant: Diesel from direct coal liquefaction, Fuel Process. Technol., 149, 285–289.

[14] Singh, A.K., and Kumar, A., 2017, Liquefaction behavior of Eocene lignites of Nagaur Basin, Rajasthan, India: A petrochemical approach, Energy Sources, Part A, 39 (15), 1686–1693.

[15] Nompo, S., Sardi, B., and Arif, M., 2020, Karakteristik batubara peringkat rendah formasi bobong dan implikasinya terhadap coal liquefaction, Jurnal Geomine, 8 (1), 17–24.

[16] Tewari, A., Dutta, S., and Sarkar, T., 2017, Biomarker signatures of Permian Gondwana coals from India and their palaeobotanical significance, Palaeogeogr., Palaeoclimatol., Palaeoecol., 468, 414–426.

[17] Liu, B., Vrabec, M., Markič, M., and Püttmann, W., 2019, Reconstruction of paleobotanical and paleoenvironmental changes in the Pliocene Velenje Basin, Slovenia, by molecular and stable isotope analysis of lignites, Int. J. Coal Geol., 206, 31–45.

[18] Wang, S., Tang, Y., Schobert, H.H., Jiang, Y., Yang, Z., and Zhang, X., 2018, Petrologic and organic geochemical characteristics of Late Permian bark coal in Mingshan coalmine, Southern China, Mar. Pet. Geol., 93, 205–217.

[19] Guo, Q., Littke, R., and Zieger, L., 2018, Petrographical and geochemical characterization of sub-bituminous coals from mines in the Cesar-Ranchería Basin, Colombia, Int. J. Coal Geol., 191, 66–79.

[20] Wang, Z., Wang, Q., Hu, R., Pan, C., Wang, X., Ren, S., Lei, Z., Kang, S., Yan, J., and Shui, H., 2019, Effect of thermal extraction on hydro-liquefaction property of residual coal, Fuel, 251, 474–481.

[21] Ra, H.W., Mun, T.Y., Hong, S.J., Chun, D.H., Lee, H.T., Yoon, S.M., Moon, J.H., Park, S.J., Lee, S.H., Yang, J.H., Kim, J.K., Jung, H., and Seo, M.W., 2021, Indirect coal liquefaction by integrated entrained flow gasification and Rectisol/Fischer–Tropsch processes for producing automobile diesel substitutes, Energy, 219, 119597.

[22] Yang, T., Zheng, J., Liu, C., Tang, F., Li, C., Deng, W., Yang, N., and Wang, X., 2022, Utilization of coal liquefaction solid residue waste as an effective additive for enhanced catalytic performance, Fuel, 329, 125454.

[23] Lin, Y., Wang, S., Sha, Y., and Yang, K., 2020, Organic geochemical characteristics of bark coal in Changguang area: Evidence from aromatic hydrocarbons, Int. J. Coal Sci. Technol., 7 (2), 288–298.

[24] Lv, J.H., Wei, X.Y., Zhang, Y.Y., and Zong, Z.M., 2020, Occurrence and distribution of biomarkers in Baiyinhua lignite, Fuel, 271, 117525.

[25] Rybicki, M., Marynowski, L., and Simoneit, B.R.T., 2020, Composition of organic compounds from low-temperature burning of lignite and their application as tracers in ambient air, Chemosphere, 249, 126087.

[26] Guo, Q., Littke, R., Sun, Y., and Zieger, L., 2020, Depositional history of low-mature coals from the Puyang Basin, Yunnan Province, China, Int. J. Coal Geol., 221, 103428.

[27] Hirano, K., 2000, Outline of NEDOL coal liquefaction process development (Pilot plant program), Fuel Process. Technol., 62 (2-3), 109–118.

[28] Shen, T., Wang, Y., Liu, Q., Liu, J., and Liu, Z., 2021, A comparative study on direct liquefaction of two coals and hydrogen efficiency to the main products, Fuel Process. Technol., 217, 106822.

[29] Wang, S., Kim, H., Lee, D., Lee, Y.R., Won, Y., Hwang, B.W., Nam, H., Ryu, H.J., and Lee, K.H., 2021, Drop-in fuel production with plastic waste pyrolysis oil over catalytic separation, Fuel, 305, 121440.

[30] Kissin, Y.V., 1990, Catagenesis of light cycloalkanes in petroleum, Org. Geochem., 15 (6), 575–594.

[31] Kissin, Y.V., 1993, Catagenesis of light acyclic isoprenoids in petroleum, Org. Geochem., 20 (7), 1077–1090.

[32] Al Sandouk-Lincke, N.A., Schwarzbauer, J., Hartkopf-Fröder, C., Volk, H., Fuentes, D., Young, M., and Littke, R., 2014, The effect of different pyrolysis temperatures on organic microfossils, vitrain and amber–A comparative study between laser assisted- and Curie Point-pyrolysis-gas chromatography/mass spectrometry, J. Anal. Appl. Pyrolysis, 107, 211–223.

[33] Mango, F.D., 1997, The light hydrocarbons in petroleum: A critical review, Org. Geochem., 26 (7-8), 417–440.

[34] Horsfield, B., Yordy, K.L., and Crelling, J.C., 1988, Determining the petroleum-generating potential of coal using organic geochemistry and organic petrology, Org. Geochem., 13 (1-3), 121–129.

[35] Noble, R.A., Wu, C.H., and Atkinson, C.D., 1991, Petroleum generation and migration from Talang Akar coals and shales offshore N.W. Java, Indonesia, Org. Geochem., 17 (3), 363–374.

[36] Kumar, T., Mohsin, R., Abd. Majid, Z., Abdul Ghafir, M.F., and Wash, A.M., 2020, Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology, Appl. Energy, 259, 114150.

[37] Dias, T., Oliveira, R., Saraiva, P., and Reis, M.S., 2020, Predictive analytics in the petrochemical industry: Research Octane Number (RON) forecasting and analysis in an industrial catalytic reforming unit, Comput. Chem. Eng., 139, 106912.

[38] Zhou, Z., Kar, T., Yang, Y., Brear, M., Leone, T.G., Anderson, J.E., Shelby, M.H., Curtis, E., and Lacey, J., 2021, The significance of octane numbers to drive cycle fuel efficiency, Fuel, 302, 121095.

[39] Wang, S., Lee, D., Kim, H., Hwang, B.W., Nam, H., and Ryu, H.J., 2022, Separation of MSW pyrolysis fuel using 20 kg scale vacuum distillation system and its potential application as petro-chemical substitute, J. Environ. Chem. Eng., 10 (5), 108416.

[40] Xie, H., Dong, G., Formolo, M., Lawson, M., Liu, J., Cong, F., Mangenot, X., Shuai, Y., Ponton, C., and Eiler, J., 2021, The evolution of intra- and inter-molecular isotope equilibria in natural gases with thermal maturation, Geochim. Cosmochim. Acta, 307, 22–41.

[41] Ji-Zhou, D., Vorkink, W.P., and Lee, M.L., 1993, Origin of long-chain alkylcyclohexanes and alkylbenzenes in a coal-bed wax, Geochim. Cosmochim. Acta, 57 (4), 837–849.

[42] Dawson, K.S., Schaperdoth, I., Freeman, K.H., and Macalady, J.L., 2013, Anaerobic biodegradation of the isoprenoid biomarkers pristane and phytane, Org. Geochem., 65, 118–126.

[43] Nunes, N.M.M., Ade, M.V.B., Rodrigues, R., de Assis, F.B., Nascimento, F., and Leite, R.T.N., 2017, Oil biodegradation in siliciclastic Reservoir: An example from Paleogene, Oliva Block, North of Santos Basin, Brazil, Anu. Inst. Geocienc., 40 (3), 222–231.

[44] Kuznetsov, P.N., Kamenskiy, E.S., and Kuznetsova, L.I., 2020, Solvolysis of bituminous coal in coal- and petroleum-derived commercial solvents, ACS Omega, 5 (24), 14384–14393.

[45] Lin, X., Yin, J., Ding, X., Wang, Y., and Xu, Z., 2021, Study on the transformation characteristic of heteroatoms during liquefaction of Naomaohu coal, J. Fuel Chem. Technol., 49 (5), 656–663.

DOI: https://doi.org/10.22146/ijc.74584

Article Metrics

Abstract views : 2134 | views : 1048 | views : 558

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.