Dye-Sensitized Solar Cell Photoelectrochemical Tandem System Performance Study: TiO2 Nanotube/N719, BiVO4/TiO2 Nanotube, Ti3+/TiO2 Nanotube for Nitrogen Reduction Reaction to Ammonia

https://doi.org/10.22146/ijc.76270

Suharyadi Suharyadi(1*), Muhammad Iqbal Syauqi(2), Prita Amelia(3), Yunita Yunita(4), Jarnuzi Gunlazuardi(5)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(*) Corresponding Author

Abstract


Ammonia is commonly synthesized through the Haber-Bosch process, which produces large amounts of CO2 emissions as it is carried out at extreme temperatures and pressures. An alternative technology is needed to synthesize ammonia which consumes less energy and is environmentally friendly. In this research, a Dye-Sensitized Solar Cell Photoelectrochemical tandem system (DSSC-PEC) was developed for the nitrogen reduction reaction (NRR) into ammonia. PEC cells utilized BiVO4/TiO2 Nanotube (BiVO4/TiO2NT) as a photoanode for water oxidation. BiVO4/TiO2NT was synthesized by the successive ionic layer adsorption and reaction (SILAR) with the cycles variation of 10, 15, and 20 cycles. The optimization method for 20 cycles (20s) gave the highest photocurrent of 0.352 mA/cm2. As a cathode where the nitrogen reduction reaction to ammonia takes place, Ti3+/TiO2NT was used. DSSC based on TiO2NT/N719 with an efficiency of 1.13% was used as an energy booster in the reaction. Using this system with an electrodes area of 3 cm2, under visible light irradiation on photoanode and DSSC while dark at the cathode, the rate of ammonia production, analyzed using the phenate method was 0.022 µmol.h−1.cm−2 with solar to chemical conversion (SCC) efficiency of 0.003%.


Keywords


BiVO4/TiO2NT; DSSC-PEC; SILAR; NRR; ammonia

Full Text:

Full Text PDF


References

[1] Chen, Q., Fan, G., Fu, H., Li, Z., and Zou, Z., 2018, Tandem photoelectrochemical cells for solar water splitting, Adv. Phys.: X, 3 (1), 1487267.

[2] Hirakawa, H., Hashimoto, M., Shiraishi, Y., and Hirai, T., 2017, Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide, J. Am. Chem. Soc., 139 (31), 10929–10936.

[3] Licht, S., Cui, B., Wang, B., Li, F.F., Lau, J., and Liu, S., 2014, Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science, 345 (6197), 637–640.

[4] Li, C., Wang, T., and Gong, J., 2020, Alternative strategies toward sustainable ammonia synthesis, Trans. Tianjin Univ., 26 (2), 67–91.

[5] Liu D., Wang, J., Bian, S., Liu, Q., Gao, Y., Wang, X., Chu, P.K., and Yu, X.F., 2020, Photoelectrochemical synthesis of ammonia with black phosphorus, Adv. Funct. Mater., 30 (24), 2002731.

[6] Liu, Q.Y., Wang, H.D., Tang, R., Cheng, Q., and Yuan, Y.J., 2021, Rutile TiO2 nanoparticles with oxygen vacancy for photocatalytic nitrogen fixation, ACS Appl. Nano Mater., 4 (9), 8674–8679.

[7] Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., and He, Y., 2015, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Res., 79, 128–146.

[8] Zhang, X., Yang, H., Zhang, B., Shen, Y., and Wang, M., 2016, BiOI-TiO2 nanocomposites for photoelectrochemical water splitting, Adv. Mater. Interfaces, 3 (1), 1500273.

[9] Syauqi, M.I., Prasetia, P., and Gunlazuardi, J., 2023, The influence of sodium alginate in water-based electrolyte on the morphology of TiO2 nanotube prepared by anodization method, Mater. Chem. Phys., 296, 127234.

[10] Yunita, Y., Syauqi, M.I., and Gunlazuardi, J., 2022, Comparative study of bismuth ferrite deposition method on TiO2 nanotube and performance of hydrogen evolution in a photoelectrochemical dye-sensitized solar cell tandem system, Makara J. Sci., 26 (3), 190–199.

[11] Zhu, X., Zhang, F., Wang, M., Gao, X., Luo, Y., Xue, J., Zhang, Y., Ding, J., Sun, S., Bao, J., and Gao, C., 2016, A shuriken-shaped m-BiVO4/{001}–TiO2 heterojunction: Synthesis, structure and enhanced visible light photocatalytic activity, Appl. Catal., A, 521, 42–49.

[12] Surahman, H., 2017, Pengembangan Sel Fotoelektrokimia Menggunakan Elektroda TiO2 Nanotube Arrays Tersensitisasi CdS Nanopartikel untuk Produksi Hidrogen, Dissertation, Universitas Indonesia.

[13] Samsudin, M.F.R., Sufian, S., Mohamed, N.M., Bashiri, R., Wolfe, F., and Ramli, R.M., 2018, Enhancement of hydrogen production over screen-printed TiO2/BiVO4 thin film in the photoelectrochemical cells, Mater. Lett., 211, 13–16.

[14] Song, J., Zheng, M., Yuan, X., Li, Q., Wang, F., Ma, L., You, Y., Liu, S., Liu, P., Jiang, D., Ma, L., and Shen, W., 2017, Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting, J. Mater. Sci., 52 (12), 6976–6986.

[15] Shi, L., Xu, C., Sun, X., Zhang, H., Liu, Z., Qu, X., and Du, F., 2018, Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation, J. Mater. Sci., 53 (16), 11329–11342.

[16] Ramakrishnan, V.M., Pitchaiya, S., Muthukumarasamy, N., Kvamme, K., Rajesh, G., Agilan, S., Pugazhendhi, A., and Velauthapillai, D., 2020, Performance of TiO2 nanoparticles synthesized by microwave and solvothermal methods as photoanode in dye-sensitized solar cells (DSSC), Int. J. Hydrogen Energy, 45 (51), 27036–27046.

[17] Orimolade, B.O., and Arotiba, O.A., 2019, An exfoliated graphite-bismuth vanadate composite photoanode for the photoelectrochemical degradation of acid orange 7 dye, Electrocatalysis, 10 (4), 429–435.

[18] Raidou, A., Benmalek, F., Sall, T., Aggour, M., Qachaou, A., Laanab, L., and Fahoume, M., 2014, Characterization of ZnO thin films grown by SILAR method, Open Access Libr. J., 1 (3), 1–9.

[19] Dette, C., Perez-Osorio, M.A., Kley, C.S., Punke, P., Patrick, C.E., Jacobson, P., Giustino, F., Jung, S.J., and Kern, K., 2014, TiO2 anatase with a bandgap in the visible region, Nano Lett., 14 (11), 6533–6538.

[20] Wu, M., Jing, Q., Feng, X., and Chen, L., 2018, BiVO4 microstructures with various morphologies: Synthesis and characterization, Appl. Surf. Sci., 427, 525–532.

[21] Drisya, K.T., Solís-López, M., Ríos-Ramírez, J.J., Durán-Álvarez, J.C., Rousseau, A., Velumani, S., Asomoza, R., Kassiba, A., Jantrania, A., and Castaneda, H., 2020, Electronic and optical competence of TiO2/BiVO4 nanocomposites in the photocatalytic processes, Sci. Rep., 10 (1), 13507.

[22] Macak, J.M., Hildebrand, H., Marten-Jahns, U., and Schmuki, P., 2008, Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes, J. Electroanal. Chem., 621 (2), 254–266.

[23] Chen, X., Li, N., Kong, Z., Ong, W.J., and Zhao, X., 2018, Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects, Mater. Horiz., 5 (1), 9–27.

[24] Budiman, H., Wibowo, R., Zuas, O., and Gunlazuardi, J., 2021, Effect of annealing temperature on the characteristic of reduced highly ordered TiO2nanotube arrays and their CO gas-sensing performance, Process. Appl. Ceram., 15 (4), 417–427.

[25] Zhu, Y., Shah, M.W., and Wang, C., 2016, Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2−x heterojunction, Appl. Catal., B, 203, 526–532.

[26] An’Nur, F.K., Wihelmina, B.V., Gunlazuardi, J., and Wibowo, R., 2020, Tandem system of dyes sensitized solar cell–photo electro chemical (DSSC-PEC) employing TiO2 nanotube/BiOBr as dark cathode for nitrogen fixation, AIP Conf. Proc., 2243, 020002.



DOI: https://doi.org/10.22146/ijc.76270

Article Metrics

Abstract views : 2234 | views : 1574


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.