Robust Biocomposite Film of Polylactic Acid and Ferroferric Oxide as a Radar Absorbing Material

https://doi.org/10.22146/ijc.79089

Rafles Sinaga(1), Wida Banar Kusumaningrum(2), Yana Taryana(3), Widya Fatriasari(4), Zuratul Ain Abdul Hami(5), Lisman Suryanegara(6*), Holilah Holilah(7), Yudi Darma(8)

(1) Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(2) Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia
(3) Research Center for Electronics and Telecommunication, National Research and Innovation Agency, Bandung 40135, Indonesia
(4) Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia
(5) 4School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal Pulau Pinang 14300, Malaysia
(6) Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia
(7) Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia
(8) Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


The polymer/ferroferric oxide (Fe3O4) foam and aerogel composites generally exhibit superior radar absorptivity performance. However, these composites have poor mechanical and thermal properties. This study manufactured a polylactic acid (PLA)/Fe3O4 bio-composite and evaluated the radar absorptivity, thermal, and mechanical properties of radar-absorbing material. The composites were prepared using a solvent casting method to mix PLA and Fe3O4 at varying concentrations, followed by evaporation, oven drying, and hot pressing into a film. Thermogravimetric analysis showed that the decomposition temperature of the PLA/Fe3O4-5% composite occurred at around 306 °C, which shifted to a lower decomposition temperature of PLA. The addition of 25 wt.% Fe3O4 improved the tensile modulus of neat PLA from 2.92 to 3.55 GPa. The vector network analyzer demonstrated that the addition of Fe3O4 at 25% improved the reflection loss of PLA from –5.17  to -25.83 dB at a thickness of 3 mm, with energy absorbed by 99.74% at frequency position 10.58 GHz. These results demonstrated that PLA/Fe3O4 composites have great potential in radar-absorbing practical applications.

Keywords


radar absorptivity; thermal properties; mechanical properties; reflection loss; PLA/Fe3O4 biocomposites

Full Text:

Full Text PDF


References

[1] Wang, H., Xiu, X., Wang, Y., Xue, Q., Ju, W., Che, W., Liao, S., Jiang, H., Tang, M., Long, J., and Hu, J., 2020, Paper-based composites as a dual-functional material for ultralight broadband radar absorbing honeycombs, Composites, Part B, 202, 108378.

[2] Jayalakshmi, C.G., Inamdar, A., Anand, A., and Kandasubramanian, B., 2019, Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts, J. Appl. Polym. Sci., 136 (14), 47241.

[3] Liu, R., Miao, M., Li, Y., Zhang, J., Cao, S., and Feng, X., 2018, Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding, ACS Appl. Mater. Interfaces, 10 (51), 44787–44795.

[4] Saini, L., Gupta, V., Patra, M.K., Jani, R.K., Shukla, A., Kumar, N., and Dixit, A., 2021, Impedance engineered microwave absorption properties of Fe-Ni/C core-shell enabled rubber composites for X-band stealth applications, J. Alloys Compd., 869, 159360.

[5] Adebayo, L.L., Soleimani, H., Yahya, N., Abbas, Z., Wahaab, F.A., Ayinla, R.T., and Ali, H., 2020, Recent advances in the development of Fe3O4-based microwave absorbing materials, Ceram. Int., 46 (2), 1249–1268.

[6] Sambyal, P., Iqbal, A., Hong, J., Kim, H., Kim, M.K., Hong, S.M., Han, M., Gogotsi, Y., and Koo, C.M., 2019, Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding, ACS Appl. Mater. Interfaces, 11 (41), 38046–38054.

[7] Wu, N., Liu, C., Xu, D., Liu, J., Liu, W., Shao, Q., and Guo, Z., 2018, Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers, ACS Sustainable Chem. Eng., 6 (9), 12471–12480.

[8] Zhang, K., Zhang, Q., Gao, X., Chen, X., Wang, Y., Li, W., and Wu, J., 2018, Effect of absorbers’ composition on the microwave absorbing performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites, J. Alloys Compd., 748, 706–716.

[9] Ni, S., Sun, X., Wang, X., Zhou, G., Yang, F., Wang, J., and He, D., 2010, Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties, Mater. Chem. Phys., 124 (1), 353–358.

[10] Wang, G., Chang, Y., Wang, L., Liu, L., and Liu, C., 2013, Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles, Mater. Res. Bull., 48 (3), 1007–1012.

[11] Ni, S., Lin, S., Pan, Q., Yang, F., Huang, K., and He, D., 2009, Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals, J. Phys. D. Appl. Phys., 42, 055004.

[12] Li, Y., Li, X., Li, Q., Zhao, Y., and Wang, J., 2022, Low-energy-consumption fabrication of porous TPU/graphene composites for high-performance microwave absorption and the influence of Fe3O4 incorporation, J. Alloys Compd., 909, 164627.

[13] Phadtare, V.D., Parale, V.G., Lee, K.Y., Kim, T., Puri, V.R., and Park, H.H., 2019, Flexible and lightweight Fe3O4/polymer foam composites for microwave-absorption applications, J. Alloys Compd., 805, 120–129.

[14] Jiang, S., Qian, K., Yu, K., Zhou, H., Weng, Y., and Zhang, Z., 2021, Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption, Chem. Phys. Lett., 779, 138873.

[15] Murariu, M., and Dubois, P., 2016, PLA composites: From production to properties, Adv. Drug Delivery Rev., 107, 17–46.

[16] Zhao, X., Liu, J., Li, J., Liang, X., Zhou, W., and Peng, S., 2022, Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials, Int. J. Biol. Macromol., 218, 115–134.

[17] Suryanegara, L., Fatriasari, W., Zulfiana, D., Anita, S.H., Masruchin, N., Gutari, S., and Kemala, T., 2021, Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO, J. Environ. Health Sci. Eng., 19 (1), 415–425.

[18] Valenzuela, R., Fuentes, M.C., Parra, C., Baeza, J., Duran, N., Sharma, S.K., Knobel, M., and Freer, J., 2009, Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method, J. Alloys Compd., 488 (1), 227–231.

[19] Qu, M., Wang, H., Chen, Q., Wu, L., Tang, P., Fan, M., Guo, Y., Fan, H., and Bin, Y., 2022, A thermally-electrically double-responsive polycaprolactone – thermoplastic polyurethane/multi-walled carbon nanotube fiber assisted with highly effective shape memory and strain sensing performance, Chem. Eng. J., 427, 131648.

[20] Rezazadeh, N., Kianvash, A., and Palmeh, P., 2018, Microwave absorption properties of double-layer nanocomposites based on polypyrrole/natural rubber, J. Appl. Polym. Sci., 135 (34), 46565.

[21] Bhattacharya, S., Roychowdhury, A., Das, D., and Nayar, S., 2015, Multi-functional biomimetic graphene induced transformation of Fe3O4 to ε-Fe2O3 at room temperature, RSC Adv., 5 (109), 89488–89497.

[22] Yang, Y., Mao, X., Li, R., Zhang, M., Li, T., Wen, L., and Qin, L., 2022, Transformation of organonitrogen‐encapsulated MOFs into N‐doped Fe3O4@C nanopolyhedron via CVD super‐assembly for photochemical oxidation, Adv. Funct. Mater., 33 (3), 2210265.

[23] Koesnarpadi, S., Santosa, S.J., Siswanta, D., and Rusdiarso, B., 2017, Humic acid coated Fe3O4 nanoparticle for phenol sorption, Indones. J. Chem., 17 (2), 274–283.

[24] Yu, B., Wang, M., Sun, H., Zhu, F., Han, J., and Bhat, G., 2017, Preparation and properties of poly (lactic acid)/magnetic Fe3O4 composites and nonwovens, RSC Adv., 7 (66), 41929–41935.

[25] Barczewski, M., Hejna, A., Aniśko, J., Andrzejewski, J., Piasecki, A., Mysiukiewicz, O., Bąk, M., Gapiński, B., and Ortega, Z., 2022, Rotational molding of polylactide (PLA) composites filled with copper slag as a waste filler from metallurgical industry, Polym. Test., 106, 107449.

[26] Barczewski, M., Mysiukiewicz, O., Matykiewicz, D., Skórczewska, K., Lewandowski, K., Andrzejewski, J., and Piasecki, A., 2020, Development of polylactide composites with improved thermomechanical properties by simultaneous use of basalt powder and a nucleating agent, Polym. Compos., 41 (7), 2947–2957.

[27] Zhao, G., Liu, H.Y., Cui, X., Du, X., Zhou, H., Mai, Y.W., Jia, Y.Y., and Yan, W., 2022, Tensile properties of 3D-printed CNT-SGF reinforced PLA composites, Compos. Sci. Technol., 230, 109333.

[28] Fan, W., Yuan, L., D’Souza, N., Xu, B., Dang, W., Xue, L., Li, J., Tonoy, C., and Sun, R., 2018, Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure, Polym. Test., 69, 71–79.

[29] Sukthavorn, K., Phengphon, N., Nootsuwan, N., Jantaratana, P., Veranitisagul, C., and Laobuthee, A., 2021, Effect of silane coupling on the properties of polylactic acid/barium ferrite magnetic composite filament for the 3D printing process, J. Appl. Polym. Sci., 138 (38), 50965.

[30] Yan, L., Wang, X., Zhao, S., Li, Y., Gao, Z., Zhang, B., Cao, M., and Qin, Y., 2017, Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition, ACS Appl. Mater. Interfaces, 9 (12), 11116–11125.

[31] Li, Y., Chen, G., Li, Q., Qiu, G., and Liu, X., 2011, Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite, J. Alloys Compd., 509 (10), 4104–4107.

[32] Zhang, B., Du, Y., Zhang, P., Zhao, H., Kang, L., Han, X., and Xu, P., 2013, Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness, J. Appl. Polym. Sci., 130 (3), 1909–1916.

[33] Ting, T.H., 2020, Synthesis, characterization of Fe3O4/polymer composites with stealth capabilities, Results Phys., 16, 102975.



DOI: https://doi.org/10.22146/ijc.79089

Article Metrics

Abstract views : 1411 | views : 620


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.