Low-Grade Ilmenite Leaching Kinetics Using Hydrochloric Acid: RSM and SCM Approaches
Yayat Iman Supriyatna(1), Agus Prasetya(2), Widi Astuti(3), Slamet Sumardi(4), Priskila Natalia(5), Dicky Marsa Adythia(6), Himawan Tri Bayu Murti Petrus(7*)
(1) Research Center for Mining Technology, National Research and Innovation Agency (PRPTB-BRIN), Jl. Ir. Sutami Km. 15, Tanjung Bintang, Lampung Selatan 35361, Indonesia; Sustainable Mineral Processing Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(2) Research Center for Mining Technology, National Research and Innovation Agency (PRPTB-BRIN), Jl. Ir. Sutami Km. 15, Tanjung Bintang, Lampung Selatan 35361, Indonesia
(3) Research Center for Mining Technology, National Research and Innovation Agency (PRPTB-BRIN), Jl. Ir. Sutami Km. 15, Tanjung Bintang, Lampung Selatan 35361, Indonesia
(4) Research Center for Mining Technology, National Research and Innovation Agency (PRPTB-BRIN), Jl. Ir. Sutami Km. 15, Tanjung Bintang, Lampung Selatan 35361, Indonesia
(5) Sustainable Mineral Processing Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(6) Sustainable Mineral Processing Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(7) Sustainable Mineral Processing Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Minerals containing TiO2 are common in Indonesia, such as ilmenite in iron sand deposits scattered along the country's coasts. Ilmenite is an important source of titanium. One method for making TiO2 from ilmenite is by solubilizing both the Fe and Ti elements in HCl and then immediately hydrolyze the Ti. The leaching of low-grade ilmenite (ground to 0.177-0.149 mm) is studied kinetically by HCl in a stirred reactor. The research was conducted using the caustic fusion method followed by HCl leaching. The leaching reaction kinetics at the optimum conditions are analyzed using response surface methodology (RSM) with a second-order polynomial equation model and SSE with the shrinking core model (SCM). The results showed that HCl concentration and leaching time were directly proportional to the leached titanium concentration. In contrast, the leaching temperature was inversely proportional. The optimum operating conditions were obtained at a temperature of 30 °C, 9 M HCl, and 120 min of leaching time. The shrinking core model is a better representation of the kinetics than RSM with a second-order polynomial equation model. Based on SCM, the rate of the leaching reaction of titanium from low-grade ilmenite is controlled by diffusion through the ash layer.
Keywords
Full Text:
Full Text PDFReferences
[1] Ministry of Energy and Mineral Resources (ESDM), 2022, Neraca Sumber Daya Mineral, Batubara, dan Panas Bumi Indonesia Tahun 2021, Geological Agency, Center for Mineral Resources, Coal and Geothermal, Bandung, Indonesia.
[2] U.S. Geological Survey, 2019, Mineral Commodity Summaries 2019, U.S. Geological Survey, Reston, VA, US, pp 204.
[3] U.S. Geological Survey, 2020, Mineral Commodity Summaries 2020, U.S. Geological Survey, Reston, VA, US, pp. 200.
[4] U.S. Geological Survey, 2021, Mineral Commodity Summaries 2021, U.S. Geological Survey, Reston, VA, US, pp. 200.
[5] U.S. Geological Survey, 2022, Mineral Commodity Summaries 2022, U.S. Geological Survey, Reston, VA, US, pp. 202.
[6] U.S. Geological Survey, 2023, Mineral Commodity Summaries 2023, U.S. Geological Survey, Reston, VA, US, pp. 210.
[7] Middlemas, S., Fang, Z.Z., and Fan, P., 2013, A new method for production of titanium dioxide pigment, Hydrometallurgy, 131-132, 107–113.
[8] Middlemas, S., Fang, Z.Z., and Fan, P., 2015, Life cycle assessment comparison of emerging and traditional Titanium dioxide manufacturing processes, J. Cleaner Prod., 89, 137–147.
[9] Gázquez, M.J., Bolívar, J.P., Garcia-Tenorio, R., and Vaca, F., 2014, A Review of the production cycle of titanium dioxide pigment, Mater. Sci. Appl., 5 (7), 441–458.
[10] Guo, Y., Liu, S., Jiang, T., Qiu, G., and Chen, F., 2014, A process for producing synthetic rutile from Panzhihua titanium slag, Hydrometallurgy, 147-148, 134–141.
[11] Nguyen, T.T., Pham, K.N., Dinh, T.H., Tran, V.D.N., and Ullah, A., 2023, Preparation of TiO2 pigment from ilmenite ore concentrate by molten alkaline process, Vietnam J. Sci. Technol. Eng., 65 (2), 15–19.
[12] Gireesh, V.S., Vinod, V.P., Krishnan Nair, S., and Ninan, G., 2015, Catalytic leaching of ilmenite using hydrochloric acid: A kinetic approach, Int. J. Miner. Process., 134, 36–40.
[13] Xiang, J., Pei, G., Lv, W., Liu, S., Lv, X., and Qiu, G., 2020, Preparation of synthetic rutile from reduced ilmenite through the aeration leaching process, Chem. Eng. Process., 147, 107774.
[14] Wahyuningsih, S., Pramono, E., Firdiyono, F., Sulistiyono, E., Budi Rahardjo, S., Hidayattullah, H., and Anatolia, F.A., 2013, Decomposition of ilmenite in hydrochloric acid to obtain high grade titanium dioxide, Asian J. Chem., 25 (12), 6791–6794.
[15] Haverkamp, R.G., Kruger, D., and Rajashekar, R., 2016, The digestion of New Zealand ilmenite by hydrochloricacid, Hydrometallurgy, 163, 198–203.
[16] Trujillo, D., and Managón, L., 2016, Titanium dioxide recovery from ilmenite contained in ferrotitaniferous sands from Mompiche-Ecuador, J. Geol. Resour. Eng., 4, 175–183.
[17] Jabit, N.A, and Senanayake, G., 2018, Characterization and leaching kinetics of ilmenite in hydrochloric acid solution for titanium dioxide production, J. Phys.: Conf. Ser., 1082 (1), 012089.
[18] Haverkamp, R.G., Wallwork, K.S., Waterland, M.R., Gu, Q., and Kimpto, J.A., 2022, Controlled hydrolysis of TiO2 from HCl digestion liquors of ilmenite, Ind. Eng. Chem. Res., 61 (19), 6333–6342.
[19] Aristanti, Y., Supriyatna, Y.I., Masduki, N.P., and Soepriyanto, S., 2018, Decomposition of Banten ilmenite by caustic fusion process for TiO2 photocatalytic spplications, IOP Conf. Ser.: Mater. Sci. Eng., 285 (1), 012005.
[20] Aristanti, Y., Supriyatna, Y.I., Masduki, N.P., and Soepriyanto, S., 2019, Effect of calcination temperature on the characteristics of TiO2 synthesized from ilmenite and its applications for photocatalysis, IOP Conf. Ser.: Mater. Sci. Eng., 478 (1), 012019.
[21] Supriyatna, Y.I., Sumardi, S., Astuti, W., Nainggolan, A.N., Ismail, A.W., Petrus, H.T.B.M., and Prasetya, A., 2020, Characterization and a preliminary study of TiO2 synthesis from Lampung iron sand, Key Eng. Mater., 849, 113–118.
[22] Supriyatna, Y.I., Astuti, W., Sumardi, S., Sudibyo, S., Prasetya, A., Ginting, L.I., Irmawati, Y., Asri, N.S., and Petrus, H.T.B.M., 2021, Correlation of nano titanium dioxide synthesis and the mineralogical characterization of ilmenite ore as raw material, Int. J. Technol., 12 (4), 749–759.
[23] Hazan, R., Muhamad Yusop, M.A., Paulus, W., and Khaironie, M.T., 2020, Obtaining TiO2 from ilmenite via alkaline fusion method, Mater. Sci. Forum, 1010, 385–390.
[24] Zhao, X., Yan, H., Yu, L., Tang, X., Liu, Z., Determination of high content of titanium in ilmenite by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion, Rock Miner. Anal., 39 (3), 459–466.
[25] Janssen, A., and Putnis, A., 2011, Processes of oxidation and HCl-leaching of Tellnes ilmenite, Hydrometallurgy, 109 (3-4), 194–201.
[26] Das, G.K., Pranolo, Y., Zhu, Z., and Cheng, C.Y., 2012, Leaching of ilmenite ores by acidic chloride solutions, Hydrometallurgy, 133, 94–99.
[27] Wanta, K.C., Tanujaya, F.H., Susanti, R.F., Petrus, H.T.B.M., Perdana, I., and Astuti, W., 2018, Studi kinetika proses atmospheric pressure acid leaching bijih laterit limonit menggunakan larutan asam nitrat konsentrasi rendah, J. Rek. Pros., 12 (2), 77–384.
[28] Lienda Aliwarga, L., Reynard, R., and Victoria, A.V., 2019, Pengendapan titanium pada larutan pasir besi dalam asam sulfat, Jurnal Teknologi Mineral dan Batubara, 15 (2), 109–118.
[29] Liu, Y., Shao, D., Wang, W., Yi, L., Chen, D., Zhao, H., Wu, J., Qi, T., and Cao, C., 2016, Preparation of rutile TiO2 by hydrolysis of TiOCl2 solution: Experiment and theory, RSC Adv., 6 (64), 59541–59549.
[30] Rahayuningsih, E., Subagya, I.S., Setiawan, F.A., and Petrus, H.T.B.M., 2019, Fresh neem leaves (Azadirachta indica A. Juss) extraction and application: An optimization using response surface methodology, Asian J. Chem., 31 (11), 2567–2574.
[31] Craparo, R.M., 2007, “Significance Level” in Encyclopedia of Measurement and Statistics 3, Eds. Salkind, N.J., SAGE Publications, Thousand Oaks, CA, US, 889–891.
[32] Petrus, H.T.B.M., Wijaya, A., Iskandar, Y., Bratakusuma, D., Setiawan, H., Wiratni, W., and Astuti, W., 2018, Lanthanum and nickel recovery from spent catalyst using citric acid: quantitative performance assessment using response surface method, Metalurgi, 33 (2), 91–100.
[33] Huang, Z., 2017, Hydrolysis of Titanic Acid in Hydrochloric Acid Solution for Synthesis of TiO2 Powder with Controlled Particle Size: Processes, Morphology, and Kinetic Study, Thesis, Department of Metallurgical Engineering, University of Utah, US.
[34] Zhang, Y., Fang, Z.Z., Xia, Y., Huang, Z., Lefler, H., Zhang, T., Sun, P., Free, M.L., and Guo, J., 2016, A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag, Chem. Eng. J., 286, 517–527.
DOI: https://doi.org/10.22146/ijc.79092
Article Metrics
Abstract views : 3037 | views : 1690Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.