Molecular Docking, Synthesis and In Vitro Antiplasmodium Assay of Monoketone Curcumin Analogous from 2-Chlorobenzaldehyde

https://doi.org/10.22146/ijc.81122

Chessy Rima Mustika(1), Endang Astuti(2*), Muhammad Idham Darussalam Marjan(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


This research aimed to develop new curcumin analogous as antiplasmodium candidates. Six curcumin analogous (1-6) were proposed and docked against three Plasmodium falciparum receptors, namely PfENR, PfLDH, and PfATP6. The docking studies were carried out to predict the interaction among the compounds and receptors as well as their binding affinity. Three curcumin analogous (3, 4, and 6), which displayed specific interactions with the target receptors and possessed the lowest binding affinity were further proceeded to synthesis and in vitro antiplasmodium assay. Synthesis of the analogous 3, 4, and 6 was carried out from 2-chlorobenzadehyde via aldol condensation reaction and the products were obtained in good yields. Their in vitro antiplasmodium activities were then evaluated against P. falciparum FCR3 and 3D7 strains. The results showed that analogous 3, 4, and 6 were active against both strains with low levels of resistance. The in silico evaluation of the physicochemical and pharmacokinetic parameters showed that curcumin analogous displayed a better ADMET profile than curcumin, demonstrating the great potential of the developed curcumin analogous as antiplasmodium candidates.

Keywords


aldol condensation; antiplasmodium; curcumin analogous; molecular docking; 2-chlorobenzaldehyde

Full Text:

Full Text PDF


References

[1] Snow, R.W., 2015, Global malaria eradication and the importance of Plasmodium falciparum epidemiology in Africa, BMC Med., 1 (13), 23.

[2] Antony, H.A., and Parija, S.C., 2016, Antimalarial drug resistance: An overview, Trop. Parasitol., 6 (1), 30–41.

[3] Theppawong, A., Kaur, G., Kumar, V., Van Camp, J., and D’hooghe, M., 2020, Synthetic strategies in curcumin chemistry focused on anticancer applications, ARKIVOC, 7, 257–305.

[4] Rasmussen, H.B., Christensen, S.B., Kvist, L.P., and Karazmi, A., 2000, A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa, Planta Med., 66 (4), 396–398.

[5] Kunnumakkara, A.B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N.K., Prasad, S., and Aggarwal, B.B., 2017, Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases, Br. J. Pharmacol., 174 (11), 1325–1348.

[6] Shetty, D., Kim, Y.J., Shim, H., and Snyder, J.P., 2015, Eliminating the heart from the curcumin molecule: Monocarbonyl curcumin mimics (MACs), Molecules, 20 (1), 249–292.

[7] Yin, S., Zheng, X., Yao, X., Wang, Y., and Liao, D., 2013, Synthesis and anticancer activity of mono-carbonyl analogues of curcumin, J. Cancer Ther., 4 (1), 113–123.

[8] Aher, R.B., Wanare, G., Kawathekar, N., Kumar, R.R., Kaushik, N.K., Sahal, D., and Chauhan, V.S., 2011, Dibenzylideneacetone analogues as novel Plasmodium falciparum inhibitors, Bioorg. Med. Chem. Lett., 10 (21), 3034–3036.

[9] Eryanti, Y., Hendra, R., Herlina, T., Zamri, A., and Supratman, U., 2018, Synthesis of N-methyl-4-piperidone curcumin analogues and their cytotoxicity activity against T47D cell lines, Indones. J. Chem., 18 (2), 362–366.

[10] Damayanti, P.N., Ritmaleni, R., and Setyowati, E.P., 2020, Synthesis and antibacterial activity of 4-Piperidone curcumin analogues against Gram-positive and Gram-negative bacteria, Res. J. Pharm. Technol., 13 (10), 4765–4769.

[11] Ekawati, L., Purwono, B., and Mardjan, M.I.D., 2020, Synthesis N-phenyl pyrazoline from dibenzalacetone and heme polymeration inhibitory activity (HPIA) assay, Key Eng. Mater., 840, 245–250.

[12] Kumar, S., Bhardwaj, T.R., Prasad, D.N., and Singh, R.K., 2018, Drug targets for resistant malaria: Historic to future perspectives, Biomed. Pharmacother., 104, 8–27.

[13] Han, D., Su, M., Tan, J., Li, C., Zhang, X., and Wang, C., 2016, Structure–activity relationship and binding mode studies for a series of diketo-acids as HIV integrase inhibitors by 3D-QSAR, molecular docking and molecular dynamics simulations, RSC Adv., 6 (33), 27594–27606.

[14] Dohutia, C., Chetia, D., Gogoi, K., and Sarma, K., 2017, Design, in silico and in vitro evaluation of curcumin analogues against Plasmodium falciparum, Exp. Parasitol., 175, 51–58.

[15] Rieckmann, K.H., Campbell, G.H., Sax, L.J., and Ema, J.E., 1978, Drug sensitivity of Plasmodium falciparum: An in-vitro microtechnique, Lancet, 311 (8054), 22–23.

[16] Zakiah, M., Syarif, R.A., Mustofa, M., Jumina, J., Fatmasari, N., and Sholikhah, E.N., 2021, In Vitro antiplasmodial, heme polymerization, and cytotoxicity of hydroxyxanthone derivatives, J. Trop. Med., 2021, 8866681.

[17] Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., and Cao, D., 2021, ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res., 49 (W1), W5–W14.

[18] Pires, D.E.V., Blundell, T.L., and Ascher, D.B., 2015, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J. Med. Chem., 58 (9), 4066–4072.

[19] Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., and Tang, Y., 2019, admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties, Bioinformatics, 35 (6), 1067–1069.

[20] Ramírez, D., and Caballero, J., 2018, Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data?, Molecules, 23 (5), 1038.

[21] Silva, D.A.A., da Costa, D.M., Oliveira, L.M., Brandão, H.N., Alves, C.Q., Santos Jr., A.F., and dos Santos Jr., M.C., 2020, Identification of flavonoids as inhibitors of Plasmodium falciparum enoyl-ACP reductase by hierarchical virtual screening, J. Braz. Chem. Soc., 31 (12), 2544–2552.

[22] Tallorin, L., Durrant, J.D., Nguyen, Q.G., McCammon, J.A., and Burkart, M.D., 2014, Celastrol inhibits Plasmodium falciparum enoyl-acyl carrier protein reductase, Bioorganic Med. Chem., 22 (21), 6053–6061.

[23] Zakaria, N.H., Wai, L.K., and Hassan, N.I., 2020, Molecular docking study of the interactions between Plasmodium falciparum lactate dehydrogenase and 4-aminoquinoline hybrids, Sains Malays., 49 (8), 1905–1913.

[24] Nagasundaram, N., George Priya Doss, C., Chakraborty, C., Karthick, V., Thirumal Kumar, D., Balaji, V., Siva, R., Lu, A., Ge, Z., and Zhu, H., 2016, Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach, Sci. Rep., 6 (1), 30106.

[25] Ji, H.F., and Shen, L., 2009, Interactions of curcumin with the PfATP6 model and the implications for its antimalarial mechanism, Bioorg. Med. Chem. Lett., 19 (9), 2453–2455.

[26] Batista, R., De Jesus Silva Junior, A., and De Oliveira, A.B., 2009, Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. non-alkaloidal natural products, Molecules, 14 (8), 3037–3072.

[27] Joshi, B.P., Mohanakrishnan, D., Mittal, G., Kar, S., Pola, J.K., Golakoti, N.R., Nanubolu, J.B., Rajesh Babu, D., Sai Suraj Kumar, S., and Sahal, D., 2018, Synthesis, mechanistic and synergy studies of diarylidenecyclohexanone derivatives as new antiplasmodial pharmacophores, Med. Chem. Res., 27 (10), 2312–2324.

[28] Astuti, E., Raharjo, T.J., Manalu, P.B., Putra, I.S., Waskitha, S.S., and Solin, J., 2021, Synthesis, molecular docking, and evaluation of some new curcumin analogs as antimalarial agents, Indones. J. Chem., 21 (2), 452–461.

[29] Salas, P.F., Herrmann, C., Cawthray, J.F., Nimphius, C., Kenkel, A., Chen, J., de Kock, C., Smith, P.J., Patrick, B.O., Adam, M.J., and Orvig, C., 2013, Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms, J. Med. Chem., 56 (4), 1596–1613.

[30] Dambuza, N.S., Smith, P., Evans, A., Norman, J., Taylor, D., Andayi, A., Egan, T., Chibale, K., and Wiesner, L., 2015, Antiplasmodial activity, in vivo pharmacokinetics and anti-malarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model, Malar. J., 14 (1), 505.

[31] Chander, S., Tang, C.R., Al-Maqtari, H.M., Jamalis, J., Penta, A., Ben Hadda, T., Mohd Sirat, H., Zheng, Y.T., and Sankaranarayanan, M., 2017, Synthesis and study of Anti-HIV-1 RT activity of 5-benzoyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one derivatives, Bioorg. Chem., 72, 74–79.

[32] Fatunde, O.A., and Brown, S.A., 2020, The role of CYP450 drug metabolism in precision cardio-oncology, Int. J. Mol. Sci., 21 (2), 604.

[33] Al Sheikh Ali, A., Khan, D., Naqvi, A., Al-Blewi, F.F., Rezki, N., Aouad, M.R., and Hagar, M., 2021, Design, synthesis, molecular modeling, anticancer studies, and density functional theory calculations of 4-(1,2,4-triazol-3- ylsulfanylmethyl)-1,2,3-triazole derivatives, ACS Omega, 6 (1), 301–316.



DOI: https://doi.org/10.22146/ijc.81122

Article Metrics

Abstract views : 160 | views : 23


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.