The Potential of Clerodendrum paniculatum Leaves Fraction as a 3-Chymotrypsin-Like (3CL) Protease Inhibitor of SARS-CoV-2

Muhammad Arba(1*), Arfan Arfan(2), Yamin Yamin(3), Muhammad Sulaiman Zubair(4)

(1) Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
(2) Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
(3) Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
(4) Faculty of Pharmacy, Tadulako University, Palu 94148, Indonesia
(*) Corresponding Author


We described the biological activity of the Clerodendrum paniculatum leaf fraction against the SARS-CoV-2 3-Chymotrypsin-like 3CL protease at the molecular level. This study applied LC-MS/MS to identify bioactive compounds from fractions, computational studies, and fluorescence resonance energy transfer (FRET) assays to ascertain their inhibitory activity. LC-MS/MS analysis of the three samples revealed that sample 1 contained 18 compound peaks. In samples 2 and 3, there were 23 and 25 compounds with different molecular weights, respectively. Docking's study identified that the alkaloids (komarovicine and roemerine) have lower binding energies than other metabolites and standard compounds, with values of -33.47 and -32.63 kJ/mol, respectively. Roemerine demonstrated excellent stability based on dynamic simulation results and confirmed its affinity for 3CL protease predicted by the MM-PBSA approach of -89.44 kJ/mol. The FRET method for testing 3CL protease activity revealed that sample 2 had an enzyme inhibitory activity of 94.3%, which was close to that of GC376 (98.19%). Meanwhile, samples 1 and 3 yielded satisfactory inhibition activity by 89.64% and 85.24%, respectively. The antiviral activity of C. paniculatum leaves was discovered for the first time by inhibiting the 3CL protease SARS-CoV-2, providing an excellent opportunity for its development as an anti-SARS-CoV-2.


Clerodendrum paniculatum; COVID-19; molecular dynamics simulation; SARS-CoV-2; 3-chymotrypsin-like protease

Full Text:

Full Text PDF


[1] Kumar, A., Singh, R., Kaur, J., Pandey, S., Sharma, V., Thakur, L., Sati, S., Mani, S., Asthana, S., Sharma, T.K., Chaudhuri, S., Bhattacharyya, S., and Kumar, N., 2021, Wuhan to world: The COVID-19 pandemic, Front. Cell. Infect. Microbiol., 11, 596201.

[2] Adil, M.T., Rahman, R., Whitelaw, D., Jain, V., Al-Taan, O., Rashid, F., Munasinghe, A., and Jambulingam, P., 2021, SARS-CoV-2 and the pandemic of COVID-19, Postgrad. Med. J., 97 (1144), 110–116.

[3] Djalante, R., Lassa, J., Setiamarga, D., Sudjatma, A., Indrawan, M., Haryanto, B., Mahfud, C., Sinapoy, M.S., Djalante, S., Rafliana, I., Gunawan, L.A., Surtiari, G.A.K., and Warsilah, H., 2020, Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020, Prog. Disaster Sci., 6, 100091.

[4] Aisyah, D.N., Mayadewi, C.A., Diva, H., Kozlakidis, Z., Siswanto, S., and Adisasmito, W., 2020, A spatial-temporal description of the SARSCoV-2 infections in Indonesia during the first six months of outbreak, PLoS One, 15 (12), e0243703.

[5] Jensen, H.I., Ozden, S., Kristensen, G.S., Azizi, M., Smedemark, S.A., and Mogensen, C.B., 2021, Limitation of life-sustaining treatment and patient involvement in decision-making: a retrospective study of a Danish COVID-19 patient cohort, Scand. J. Trauma, Resusc. Emerg. Med., 29 (1), 173.

[6] Gottlieb, R.L., Vaca, C.E., Paredes, R., Mera, J., Webb, B.J., Perez, G., Oguchi, G., Ryan, P., Nielsen, B.U., Brown, M., Hidalgo, A., Sachdeva, Y., Mittal, S., Osiyemi, O., Skarbinski, J., Juneja, K., Hyland, R.H., Osinusi, A., Chen, S., Camus, G., Abdelghany, M., Davies, S., Behenna-Renton, N., Duff, F., Marty, F.M., Katz, M.J., Ginde, A.A., Brown, S.M., Schiffer, J.T., and Hill, J.A., 2022, Early remdesivir to prevent progression to severe Covid-19 in outpatients, N. Engl. J. Med., 386 (4), 305–315.

[7] Patel, T.K., Patel, P.B., Barvaliya, M., Saurabh, M.K., Bhalla, H.L., and Khosla, P.P., 2021, Efficacy and safety of lopinavir-ritonavir in COVID-19: A systematic review of randomized controlled trials, J. Infect. Public Health, 14 (6), 740–748.

[8] Gautret, P., Lagier, J.C., Honoré, S., Hoang, V.T., Colson, P., and Raoult, D., 2021, Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open label non-randomized clinical trial revisited, Int. J. Antimicrob. Agents, 57 (1), 106243.

[9] Salazar, E., Perez, K.K., Ashraf, M., Chen, J., Castillo, B., Christensen, P.A., Eubank, T., Bernard, D.W., Eagar, T.N., Long, S.W., Subedi, S., Olsen, R.J., Leveque, C., Schwartz, M.R., Dey, M., Chavez-East, C., Rogers, J., Shehabeldin, A., Joseph, D., Williams, G., Thomas, K., Masud, F., Talley, C., Dlouhy, K.G., Lopez, B.V., Hampton, C., Lavinder, J., Gollihar, J.D., Maranhao, A.C., Ippolito, G.C., Saavedra, M.O., Cantu, C.C., Yerramilli, P., Pruitt, L., and Musser, J.M., 2020, Treatment of coronavirus disease 2019 (COVID-19) patients with convalescent plasma, Am. J. Pathol., 190 (8), 1680–1690.

[10] Izcovich, A., Siemieniuk, R.A., Bartoszko, J.J., Ge, L., Zeraatkar, D., Kum, E., Qasim, A., Khamis, A.M., Rochwerg, B., Agoritsas, T., Chu, D.K., McLeod, S.L., Mustafa, R.A., Vandvik, P., and Brignardello-Petersen, R., 2022, Adverse effects of remdesivir, hydroxychloroquine and lopinavir/ritonavir when used for COVID-19: Systematic review and meta-analysis of randomised trials, BMJ Open, 12 (3), e048502.

[11] Mody, V., Ho, J., Wills, S., Mawri, A., Lawson, L., Ebert, M.C.C.J.C., Fortin, G.M., Rayalam, S., and Taval, S., 2021, Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Commun. Biol., 4 (1), 93.

[12] Osipiuk, J., Azizi, S.A., Dvorkin, S., Endres, M., Jedrzejczak, R., Jones, K.A., Kang, S., Kathayat, R.S., Kim, Y., Lisnyak, V.G., Maki, S.L., Nicolaescu, V., Taylor, C.A., Tesar, C., Zhang, Y.A., Zhou, Z., Randall, G., Michalska, K., Snyder, S.A., Dickinson, B.C., and Joachimiak, A., 2021, Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors, Nat. Commun., 12 (1), 743.

[13] Vlachakis, D., Papakonstantinou, E., Mitsis, T., Pierouli, K., Diakou, I., Chrousos, G., and Bacopoulou, F., 2020, Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic, Food Chem. Toxicol., 146, 111805.

[14] Kanimozhi, G., Pradhapsingh, B., Singh Pawar, C., Khan, H.A., Alrokayan, S.H., and Prasad, N.R., 2021, SARS-CoV-2: Pathogenesis, molecular targets and experimental models, Front. Pharmacol., 12, 638334.

[15] Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., and Li, H., 2020, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B, 10 (5), 766–788.

[16] Gyebi, G.A., Ogunro, O.B., Adegunloye, A.P., Ogunyemi, O.M., and Afolabi, S.O., 2021, Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants, J. Biomol. Struct. Dyn., 39 (9), 3396–3408.

[17] Roe, M.K., Junod, N.A., Young, A.R., Beachboard, D.C., and Stobart, C.C., 2021, Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19, J. Gen. Virol., 102 (3), 001558.

[18] Malone, B., Urakova, N., Snijder, E.J., and Campbell, E.A., 2022, Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design, Nat. Rev. Mol. Cell Biol., 23 (1), 21–39.

[19] Cannalire, R., Cerchia, C., Beccari, A.R., Di Leva, F.S., and Summa, V., 2022, Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: State of the art and future opportunities, J. Med. Chem., 65 (4), 2716–2746.

[20] Mathur, S., and Hoskins, C., 2017, Drug development: Lessons from nature, Biomed. Reports, 6 (6), 612–614.

[21] Atanasov, A.G., Zotchev, S.B., Dirsch, V.M., Orhan, I.E., Banach, M., Rollinger, J.M., Barreca, D., Weckwerth, W., Bauer, R., Bayer, E.A., Majeed, M., Bishayee, A., Bochkov, V., Bonn, G.K., Braidy, N., Bucar, F., Cifuentes, A., D’Onofrio, G., Bodkin, M., Diederich, M., Dinkova-Kostova, A.T., Efferth, T., El Bairi, K., Arkells, N., Fan, T.P., Fiebich, B.L., Freissmuth, M., Georgiev, M.I., Gibbons, S., Godfrey, K.M., Gruber, C.W., Heer, J., Huber, L.A., Ibanez, E., Kijjoa, A., Kiss, A.K., Lu, A., Macias, F.A., Miller, M.J.S., Mocan, A., Müller, R., Nicoletti, F., Perry, G., Pittalà, V., Rastrelli, L., Ristow, M., Russo, G.L., Silva, A.S., Schuster, D., Sheridan, H., Skalicka-Woźniak, K., Skaltsounis, L., Sobarzo-Sánchez, E., Bredt, D.S., Stuppner, H., Sureda, A., Tzvetkov, N.T., Vacca, R.A., Aggarwal, B.B., Battino, M., Giampieri, F., Wink, M., Wolfender, J.L., Xiao, J., Yeung, A.W.K., Lizard, G., Popp, M.A., Heinrich, M., Berindan-Neagoe, I., Stadler, M., Daglia, M., Verpoorte, R., and Supuran, C.T., 2021, Natural products in drug discovery: Advances and opportunities, Nat. Rev. Drug Discovery, 20 (3), 200–216.

[22] Shruthi, G., Joyappa, M.P., Chandrashekhar, S., Kollur, S.P., Prasad, M.N.N., Prasad, A., and Shivamallu, C., 2016, Bactericidal property of Clerodendrum paniculatum and Saraca asoka against multidrug resistant bacteria, restoring the faith in herbal medicine, Int. J. Pharm. Sci. Res., 8 (9), 3863–3871.

[23] Kopilakkal, R., Chanda, K., and Balamurali, M.M., 2021, Hepatoprotective and antioxidant capacity of Clerodendrum paniculatum flower extracts against carbon tetrachloride-induced hepatotoxicity in rats, ACS Omega, 6 (40), 26489–26498.

[24] Phuneerub, P., Limpanasithikul, W., Palanuvej, C., and Ruangrungsi, N., 2015, In vitro anti-inflammatory, mutagenic and antimutagenic activities of ethanolic extract of Clerodendrum paniculatum root, J. Adv. Pharm. Technol. Res., 6 (2), 48–52.

[25] Prashith Kekuda, T.R., and Sudharshan, S.J., 2018, Ethnobotanical uses, phytochemistry and biological activities of Clerodendrum paniculatum L. (Lamiaceae): A comprehensive review, J. Drug Delivery Ther., 8 (5), 28–34.

[26] Umereweneza, D., Molel, J.T., Said, J., Atilaw, Y., Muhizi, T., Trybala, E., Bergström, T., Gogoll, A., and Erdélyi, M., 2021, Antiviral iridoid glycosides from Clerodendrum myricoides, Fitoterapia, 155, 105055.

[27] Nallusamy, S., Mannu, J., Ravikumar, C., Angamuthu, K., Nathan, B., Nachimuthu, K., Ramasamy, G., Muthurajan, R., Subbarayalu, M., and Neelakandan, K., 2021, Exploring phytochemicals of traditional medicinal plants exhibiting inhibitory activity against main protease, spike glycoprotein, RNA-dependent RNA polymerase and non-structural proteins of SARS-CoV-2 through virtual screening, Front. Pharmacol., 12, 667704.

[28] Yamin, Y., Ruslin, R., Sartinah, A., Ihsan, S., Kasmawati, H., Suryani, S., Andriyani, R., Asma, A., Adjeng, A.N.T., and Arba, M., 2020, Radical scavenging assay and determination flavonoid and phenolic total of extract and fractions of Raghu bark (Dracontomelon dao (Blanco) Merr), Res. J. Pharm. Technol., 13 (5), 2335–2339.

[29] Su, H., Yao, S., Zhao, W., Li, M., Liu, J., Shang, W., Xie, H., Ke, C., Hu, H., Gao, M., Yu, K., Liu, H., Shen, J., Tang, W., Zhang, L., Xiao, G., Ni, L., Wang, D., Zuo, J., Jiang, H., Bai, F., Wu, Y., Ye, Y., and Xu, Y., 2020, Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients, Acta Pharmacol. Sin., 41 (9), 1167–1177.

[30] Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., 2009, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 30 (16), 2785–2791.

[31] Arfan, A., Muliadi, R., Malina, R., Trinovitasari, N., and Asnawi, A., 2022, Docking and dynamics studies: Identifying the binding ability of quercetin analogs to the ADP-ribose phosphatase of SARS CoV-2, Jurnal Kartika Kimia, 5 (2), 145–151.

[32] Trott, O., and Olson, A.J., 2010, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31 (2), 455–461.

[33] Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and Lindahl, E., 2015, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2, 19–25.

[34] Petrov, D., and Zagrovic, B., 2014, Are Current Atomistic Force Fields Accurate Enough to Study Proteins in Crowded Environments?, PLoS Comput. Biol., 10 (5), e1003638.

[35] Sousa da Silva, A.W., and Vranken, W.F., 2012, ACPYPE - AnteChamber PYthon Parser interfacE, BMC Res. Notes, 5 (1), 367.

[36] Arba, M., Ruslin, R., Kalsum, W.U., Alroem, A., Muzakkar, M.Z., Usman, I., and Tjahjono, D.H., 2018, QSAR, molecular docking and dynamics studies of quinazoline derivatives as inhibitor of phosphatidylinositol 3-kinase, J. Appl. Pharm. Sci., 8 (5), 1–9.

[37] Wang, H., Gao, X., and Fang, J., 2016, Multiple staggered mesh Ewald: Boosting the accuracy of the smooth particle mesh Ewald method, J. Chem. Theory Comput., 12 (11), 5596–5608.

[38] Kumari, R., Kumar, R., and Lynn, A., 2014, g-mmpbsa–A GROMACS tool for high-throughput MM-PBSA calculations, J. Chem. Inf. Model., 54 (7), 1951–1962.

[39] Zubair, M.S., Maulana, S., Widodo, A., Pitopang, R., Arba, M., and Hariono, M., 2021, GC-MS, LC-MS/MS, docking and molecular dynamics approaches to identify potential SARS-CoV-2 3-chymotrypsin-like protease inhibitors from Zingiber officinale Roscoe, Molecules, 26 (17), 5230.

[40] Liu, L., He, F., Yu, Y., and Wang, Y., 2020, Application of FRET biosensors in mechanobiology and mechanopharmacological screening, Front. Bioeng. Biotechnol., 8, 595497.

[41] Cihlova, B., Huskova, A., Böserle, J., Nencka, R., Boura, E., and Silhan, J., 2021, High-throughput fluorescent assay for inhibitor screening of proteases from RNA viruses, Molecules, 26 (13), 3792.

[42] Musa, W., Hersanti, H., Zainuddin, A., and Tjokronegoro, R., 2009, The poriferasta compound-5,22e,25-trien-3-Oβ from Clerodendrum paniculatum leaf as inducer agent of systemic resistance on red chilli plant Capsicum annuum L from Cucumber Mosaic Virus (CMV), Indones. J. Chem., 9 (3), 479–486.

[43] Joseph, J., Bindhu, A.R., and Aleykutty, N.A., 2013, In vitro and in vivo antiinflammatory activity of Clerodendrum paniculatum Linn. leaves, Indian J. Pharm. Sci., 75 (3), 376–379.

[44] Joshi, B., Panda, S.K., Jouneghani, R.S., Liu, M., Parajuli, N., Leyssen, P., Neyts, J., and Luyten, W., 2020, Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence, Evidence-Based Complementary Altern. Med., 2020, 1043471.

[45] Kar, P., Sharma, N.R., Singh, B., Sen, A., and Roy, A., 2021, Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation, J. Biomol. Struct. Dyn., 39 (13), 4774–4785.

[46] Erukainure, O.L., Atolani, O., Muhammad, A., Katsayal, S.B., Ebhuoma, O.O., Ibeji, C.U., and Mesaik, M.A., 2022, Targeting the initiation and termination codons of SARS-CoV-2 spike protein as possible therapy against COVID-19: The role of novel harpagide 5-O-β-D-glucopyranoside from Clerodendrum volubile P Beauv. (Labiatae), J. Biomol. Struct. Dyn., 40 (6), 2475–2488.


Article Metrics

Abstract views : 1230 | views : 616

Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.