Synthesis of Calix[4]resorcinarene Derivatives as Antimalarial Agents through Heme Polymerization Inhibition Assay

https://doi.org/10.22146/ijc.81452

Rizky Riyami Putri(1), Harno Dwi Pranowo(2), Yehezkiel Steven Kurniawan(3), Hana Anisa Fatimi(4), Jumina Jumina(5*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Malaria is an endemic disease in tropical countries, including Indonesia, with a high annual mortality rate. Because of that, serious attention shall be given to find new antimalarial agents that are highly active for medical treatment. In this work, we designed and synthesized three calix[4]resorcinarene derivatives and evaluated them as antimalarial agents through in vitro heme polymerization inhibitory assay. The calix[4]resorcinarenes were prepared from resorcinol and corresponding aldehyde derivatives in ethanol media through a cyclo-condensation reaction. The calix[4]resorcinarene products were obtained in 31.1–85.1% yield. The synthesized compounds were subjected to structure elucidation using spectroscopy techniques. The antimalarial activity of calix[4]resorcinarene with aromatic substituent (IC50 = 0.198 mg/mL) was higher than the aliphatic ones (IC50 = 0.282–0.814 mg/mL). It was found that all calix[4]resorcinarenes in this work exhibited stronger antimalarial activity than chloroquine diphosphate as the positive control (IC50 = 1.157 mg/mL). The calix[4]resorcinarenes could interact with hydrogen bonding, thus inhibiting the heme polymerization process. These findings demonstrate that calix[4]resorcinarene derivatives are potential antimalarial agents to be developed for effective medical treatment in the near future.


Keywords


antimalarial; aromatic; aliphatic; calix[4]resorcinarene; heme polymerization



References

[1] Oluwafemi, T., and Azuaba, E., 2022, Impact of hygiene on malaria transmission dynamics: A mathematical model, J. Multidiscip. Appl. Nat. Sci., 2 (1), 1–9.

[2] Pandey, A.V., Bisht, H., Babbarwal, V.K., Srivastava, J., Pandey, K.C., and Chauhan, V.S., 2001, Mechanism of malarial haem detoxification inhibition by chloroquine, Biochem. J., 355 (2), 333–338.

[3] Talapko, J., Škrlec, I., Alebić, T., Jukić, M., and Včev, A., 2019, Malaria: The past and the present, Microorganisms, 7 (6), 179.

[4] Pannu, A.K., 2019, Malaria today: Advances in management and control, Trop. Doct., 49 (3), 160–164.

[5] Kim, J., Tan, Y.Z., Wicht, K.J., Erramilli, S.K., Dhingra, S.K., Okombo, J., Vendome, J., Hagenah, L.M., Giacometti, S.I., Warren, A.L., Nosol, K., Roepe, P.D., Potter, C.S., Carragher, B., Kossiakoff, A.A., Quick, M., Fidock, D.A., and Mancia, F., 2019, Structure and drug resistance of the Plasmodium falciparum transporter PfCRT, Nature, 576 (7786), 315–320.

[6] Veiga, M.I., Dhingra, S.K., Henrich, P.P., Straimer, J., Gnädig, N., Uhlemann, A.C., Martin, R.E., Lehane, A.M., and Fidock, D.A., 2016, Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies, Nat. Commun., 7 (1), 11553.

[7] Braga, C.B., Martins, A.C., Cayotopa, A.D.E., Klein, W.W., Schlosser, A.R., da Silva, A.F., de Souza, M.N., Andrade, B.W.B., Filgueira-Júnior, J.A., Pinto, W.J., and da Silva-Nunes, M., 2015, Side effects of chloroquine and primaquine and symptom reduction in malaria endemic area (Mancio Lima, Acre, Brazil), Interdiscip. Perspect. Infect. Dis., 2015, 346853.

[8] Al-Bari, M.A.A., 2015, Chloroquine analogues in drug discovery: New directions of uses, mechanism of actions and toxic manifestation from malaria to multivarious diseases, J. Antimicrob. Chemother., 70 (6), 1608–1621.

[9] Tse, E.G., Korsik, M., and Todd, M.H., 2019, The past, present and future of anti-malarial medicines, Malar. J., 18 (1), 93.

[10] Belete, T.M., 2020, Recent progress in the development of new antimalarial drugs with novel targets, Drug Des., Dev. Ther., 14, 3875–3889.

[11] Ungogo, M.A., Ebiloma, G.U., Ichoron, N., Igoli, J.O., de Koning, H.P., and Balogun, E.O., 2020, A review of the antimalarial, antitrypanosomal, and antileishmanial activities of natural compounds isolated from Nigerian flora, Front. Chem., 8, 617448.

[12] Nqoro, X., Tobeka, N., and Aderibigde, B.A., 2017, Quinoline-based hybrid compounds with antimalarial activity, Molecules, 22 (12), 2268.

[13] Herlina, T., Supratman, U., Soedjanaatmadja, M.S., Subarnas, A., Sutardjo, S., Abdullah, N.R., and Hayashi, H., 2009, Anti-malarial compound from the stem bark of Erythrina variegate, Indones. J. Chem., 9 (2), 308–311.

[14] Murtihapsari, M., Parubak, A.S., Mangallo, B., Ekasari, W., Asih, P.B., and Lestari, A.I., 2013, Isolation and presence of antimalarial activities of marine sponge Xestospongia sp., Indones. J. Chem., 13 (3), 199–204.

[15] Cahyono, R.N., Andari, S.A., and Wahyuningsih, T.D., 2022, Synthesis of N-phenylpyrazoline derivative from 4-chlorobenzaldehyde and 4-chloroacetophenone and its activity as an antimalarial agent, Mater. Sci. Forum, 1061, 211–216.

[16] Wiratama, M., Waskitha, S.S.W., Haryadi, W., and Wahyuningsih, T.D., 2022, Synthesis, antimalarial activity assay and molecular docking study of N-substituted chloro-pyrazolines, Trop. J. Pharm. Res., 21 (6), 1255–1261.

[17] Nasuhi Pur, F., 2016, Calixdrugs: Calixarene-based clusters of established therapeutic drug agents, Mol. Diversity, 20 (3), 781–787.

[18] Shah, R.B., Valand, N.N., Sutariya, P.G., and Menon, S.K., 2015, Design, synthesis and characterization of quinoline-pyrimidine linked calix[4]arene scaffolds as anti-malarial agents, J. Inclusion Phenom. Macrocyclic Chem., 84 (1), 173–178.

[19] Sari, D.K., Hidayat, D.N.W., Fatmawati, D.R., Triono, S., Kurniawan, Y.S., and Jumina, J., 2022, Synthesis and antimalarial activity assay of C-arylcalix[4]pyrogallolarenes using heme polymerization inhibition activity (HPIA) method, Mater. Sci. Forum, 1061, 187–193.

[20] Coronado, L.M., Nadovich, C.T., and Spadafora, C., 2014, Malarial hemozoin: From target to tool, Biochim. Biophys. Acta, Gen. Subj., 1840 (6), 2032–2041.

[21] Jumina, J., Priastomo, Y., Setiawan, H.R., Mutmainah, M., Kurniawan, Y.S., and Ohto, K., 2020, Simultaneous removal of lead(II), chromium(III), and copper(II) heavy metal ions through an adsorption process using C-phenylcalix[4]pyrogallolarene material, J. Environ. Chem. Eng., 8 (4), 103971.

[22] Priyangga, K.T.A., Kurniawan, Y.S., and Yuliati, L., 2021, The role of a nitro substituent in C-phenylcalix[4]resorcinarenes to enhance the adsorption of gold(III) ions, ChemistrySelect, 6 (21), 5366–5373.

[23] Eddaif, L., Trif, L., Telegdi, J., Egyed, O., and Shaban, A., 2019, Calix[4]resorcinarene macrocycles, J. Therm. Anal. Calorim., 137 (2), 529–541.

[24] Firdaus, F., Jumina, J., and Sastrohamidjojo, H., 2007, Synthesis and conformation of p-(amino)butoxycalix[4]arene, Indones. J. Chem., 7 (1), 49–57.

[25] Basilico, N., Pagani, E., Monti, D., Olliaro, P., and Taramelii, D., 1998, A microtitre-based method for measuring haem polymerization inhibitory activity (HPIA) of antimalarial drugs, J. Antimicrob. Chemother., 42 (1), 55–60.

[26] Priyangga, K.T.A., Kurniawan, Y.S., Ohto, K., and Jumina, J., 2022, A review on calixarene fluorescent chemosensor agents for various analytes, J. Multidiscip. Appl. Nat. Sci., 2 (1), 23–40.



DOI: https://doi.org/10.22146/ijc.81452

Article Metrics

Abstract views : 2346 | views : 1143 | views : 532


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.