Synthesis, Characterization, and Magnetic Properties of Iron(II) Complex with 2,6-Bis(pyrazol-3-yl)pyridine Ligand and Tetracyanonickelate Anion

https://doi.org/10.22146/ijc.81625

Fitriani Fitriani(1), Irma Mulyani(2*), Djulia Onggo(3), Kristian Handoyo Sugiyarto(4), Ashis Bhattacharjee(5), Hiroki Akutsu(6), Anas Santria(7)

(1) Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(2) Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(3) Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(4) Department of Chemistry Education, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
(5) Department of Physics, Visva-Bharati University, Santiniketan 731204, India
(6) Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
(7) Research Center for Chemistry, National Research and Innovation Agency, Kawasan PUSPITEK, Serpong, Tangerang Selatan, Banten 15314, Indonesia
(*) Corresponding Author

Abstract


The complex containing iron(II), 2,6-bis(pyrazol-3-yl)pyridine (3-bpp) as ligand, and tetracyanonickelate as counter anion has been synthesized and characterized. The characterization data suggest the corresponding formula of [Fe(3-bpp)2][Ni(CN)4]·4H2O. Meanwhile, the SEM–EDX analysis image confirms the existence of all elements contained in the complex except the hydrogen atom. The infrared spectra exhibit vibration bands of the functional groups of 3-bpp ligand and [Ni(CN)4]−1 anion. From magnetic property measurement, the complex's molar magnetic susceptibility (XMT) value is 2.65 emu mol−1 K at 300 K, which contains about 75% high-spin state of the Fe(II) complex. Upon lowering the temperature, the XMT value gradually decreases around 1.37 emu mol−1 K at 13 K. It decreases sharply to about 0.73 emu mol−1 K at 2 K. These values reveal that Fe(II) complex is in the low-spin (LS) state. As a result, the complex exhibited spin-crossover characteristics of gradual transition without thermal hysteresis, and the transition temperature occurred below room temperature with a transition temperature (T1/2) close to 140 K. The spin crossover property of the complex is supported by a thermochromic reversible color change from red-brown at room temperature to dark brown on cooling in liquid nitrogen associated with the high-spin to low-spin transition.

Keywords


iron(II); spin crossover; tetracyanonickelate; 2,6-bis(pyrazol-3-yl)pyridine

Full Text:

Full Text PDF


References

[1] Brooker, S., 2015, Spin crossover with thermal hysteresis: Practicalities and lessons learnt, Chem. Soc. Rev., 44 (10), 2880–2892.

[2] Gaspar, A.B., Molnár, G., Rotaru, A., and Shepherd, H.J., 2018, Pressure effect investigations on spin-crossover coordination compounds, C.R. Chim., 21 (12), 1095–1120.

[3] Chastanet, G., Desplanches, C., Baldé, C., Rosa, P., Marchivie, M., and Guionneau, P., 2018, A critical review of the T(LIESST) temperature in spin crossover materials – What it is and what it is not, Chem. Sq., 2, 21–18.

[4] Cambi, L., and Szego, L., 1931, Uber die magnetische susceptibilitat der komplexen verbindungen, Ber. Dtsch. Chem. Ges. B, 64 (10), 2591–2598.

[5] Gütlich, P., Gaspar, A.B., and Garcia, Y., 2013, Spin state switching in iron coordination compound, Beilstein J. Org. Chem., 9, 342–391.

[6] Kumar, K.S., and Ruben, M., 2017, Emerging trends in spin crossover (SCO) based functional materials and devices, Coord. Chem. Rev., 346, 176–205.

[7] Jureschi, C.M., Linares, J., Boulmaali, A., Dahoo, P.R., Rotaru, A., and Garcia, Y., 2016, Pressure and temperature sensors using two spin crossover materials, Sensors, 16 (2), 187.

[8] Hayami, S., Holmes, S.M., and Halcrow, M.A., 2015, Spin-state switches in molecular materials chemistry, J. Mater. Chem. C, 3 (30), 7775–7778.

[9] Halcrow, M.A., 2014, Recent advances in the synthesis and applications of 2,6-dipyrazolylpyridine derivatives and their complexes, New J. Chem., 38 (5), 1868–1882.

[10] Sugiyarto, K.H., Onggo, D., Akutsu, H., Reddy, V.R., Sutrisno, H., Nakazawa, Y., and Bhattacharjee, A., 2021, Structural, magnetic and Mössbauer spectroscopic studies of the [Fe(3-bpp)2](CF3COO)2 complex: role of crystal packing leading to an incomplete Fe(II) high spin ⇋ low spin transition, CrystEngComm, 23 (15), 2854–2861.

[11] Gutlich, P., and Goodwin, H.A., 2014, Spin crossover an overall perspective, Top. Curr. Chem., 233, 1–47.

[12] Milin, E., Benaicha, B., El Hajj, F., Patinec, V., Triki, S., Marchivie, M., Gomez-Garcia, C.J., and Pillet, S., 2016, Magnetic bistability in macrocycle-based Fe(II) spin-crossover complexes: Counter ion and solvent effects, Eur. J. Inorg. Chem., 2016 (34), 5305–5314.

[13] Sugiyarto, K.H., McHale, W.A., Craig, D.C., Rae, A.D., Scudder, M.L., and Goodwin, H.A., 2003, Spin transition centres linked by the nitroprusside ion. The cooperative transition in bis(2,6-bis(pyrazol-3-yl)-pyridine)iron(II) nitroprusside, Dalton Trans., 12, 2443–2448.

[14] King, P., Henkelis, J.J., Kilner, C.A., and Halcrow, M.A., 2013, Four new spin-crossover salts of [Fe(3-bpp)2]2+ (3-bpp=2,6-bis[1H-pyrazol-3-yl]pyridine), Polyhedron, 52, 1449–1456.

[15] Djemel, A., Stefanczyk, O., Marchivie, M., Trzop, E., Collet, E., Desplanches, C., Delimi, R., and Chastanet, G., 2018, Solvatomorphism-induced 45 K hysteresis width in a spin crossover mononuclear compound, Chem. - Eur. J., 24 (55), 14760–14767.

[16] Lin, Y., and Lang, S.A., 1977, Novel two step synthesis of pyrazoles and isoxazoles from aryl methyl ketones, J. Heterocycl. Chem., 14 (2), 345–347.

[17] Gamez, P., Steensma, R.H., Driessen, W.L., and Reedijk, J., 2002, Copper(II) compounds of the planar-tridentate ligand 2,6-bis(pyrazol-3-yl)pyridine, Inorg. Chim. Acta, 333 (1), 51–56.

[18] Tobon, Y.A., Kabalan, L., Bonhommeau, S., Daro, N., Grosjean, A., Guionneau, P., Matar, S., Létard, J.F., and Guillaume, F., 2013, Spin crossover complexes [Fe(NH2trz)3](X)2·nH2O investigated by means of Raman scattering and DFT calculations, Phys. Chem. Chem. Phys., 15 (41), 18128–18137.

[19] Karaağaç, D., and Kürkçüoğlu, G.S., 2015, Syntheses, spectroscopic and thermal analyses of the Hofmann-type metal(II) tetracyanonickelate(II) pyridazine complexes: {[M(pdz)Ni(CN)4]∙H2O}n (M = Zn(II) or Cd(II)), Bull. Chem. Soc. Ethiop., 29 (3), 415–422.

[20] Karaağaç, D., and Kürkçüoglu, G.S., 2015, Syntheses, spectroscopic and thermal analyses of cyanide bridged heteronuclear polymeric complexes: [M(L)2Ni(CN)4]n(L=N-methylethylenediamine or N-ethylethylenediamine; M]Ni(II), Cu(II), Zn(II) or Cd(II)), J. Mol. Struct., 1105, 263–272.

[21] Jornet-Mollá, V., Giménez-Saiz, C., and Romero, F.M., 2018, Synthesis, structure, and photomagnetic properties of a hydrogen-bonded lattice of [Fe(bpp)2]2+ spin-crossover complexes and nicotinate anions, Crystals, 8 (11), 439.

[22] Córdoba, L.M., Gómez, M.I., Morán, J.A., and Aymonino, P.J., 2008, Synthesis of the SrFeO2.5 and BaFeO3-x perovskites by thermal decomposition of SrNH4[Fe(CN)6]3H2O and BaNH4[Fe(CN)6], J. Argent. Chem. Soc., 96 (1-2), 1–12.

[23] Karaağaç, D., and Kürkçüoğlu, G.S., 2016, Syntheses and characterizations of the cyanide-bridged heteronuclear polymeric complexes with 2-ethylimidazole, Bull. Chem. Soc. Ethiop., 30 (2), 263–272.

[24] Roberts, T.D., Little, M.A., Cook, L.J.K., and Halcrow, M.A., 2014, Iron(II) complexes of 2,6-di(1H-pyrazol-3-yl)-pyridine derivatives with hydrogen bonding and sterically bulky substituents, Dalton Trans., 43 (20), 7577–7588.

[25] Djemel, A., Stefanczyk, O., Desplanches, C., Kumar, K., Delimi, R., Benaceur, F., Ohkoshi, S.I., and Chastanet, G., 2021, Switching on thermal and light-induced spin crossover by desolvation of [Fe(3-bpp)2](XO4)2·solvent (X = Cl, Re) compounds, Inorg. Chem. Front., 8 (13), 3210–3221.



DOI: https://doi.org/10.22146/ijc.81625

Article Metrics

Abstract views : 1423 | views : 672


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.