Utilization of Lignin and Lignosulfonate from Oil Palm Empty Fruit Bunches as Filler in PVDF Proton Exchange Membrane Fuel Cell

https://doi.org/10.22146/ijc.81750

Nala Ridhwanul Mu'izzah(1), Pinka Zuhdiana Hapsari(2), Nabila Putri Aulia(3), Dian Wahyu Tri Wulansari(4), Fauziyah Azhari(5), Edi Pramono(6*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(*) Corresponding Author

Abstract


A study on the polyvinylidene fluoride (PVDF) membrane using lignin and lignosulfonate oil palm empty fruit bunch (OPEFB) fillers have been carried out. This study aims to determine the additional effect of lignin and lignosulfonate on PVDF membrane. Lignin sulfonation has a good result proven by Fourier transform infrared spectra with a peak at 1192 cm−1 which indicates sulfonate group. The sulfonation degree was increased by 8.9% for lignosulfonate. The membrane was prepared by the phase inversion method. Data present that all the membranes have an asymmetric structure with finger-like and sponge-like pores. Good thermal stability indicated by thermal gravimetric analysis showed degradation at 432 °C. The mechanical properties of the membrane decrease with the addition of filler. From the X-ray diffraction, peaks appeared at 18.39°, 21.35°, and 23.75° for all the membranes indicating of α and β phases. Lignin and lignosulfonate increased membrane hydrophilicity and water uptake. The presence of the sulfonate group increases the ionic exchange capacity and ionic conductivity up to 2.78 mmol/g and 9.95 × 10−5 S/cm, respectively, for 5% lignosulfonate addition. Thus, PVDF/lignosulfonate has the potential as a polymer electrolyte membrane.

Keywords


lignin; lignosulfonate; OPEFB; polymer electrolyte membrane; PVDF

Full Text:

Full Text PDF


References

[1] Abeleda Jr, J.M.A., and Espiritu, R., 2022, The status and prospects of hydrogen and fuel cell technology in the Philippines, Energy Policy, 162, 112781.

[2] Sokmez, E., Taymaz, I., and Kahveci, E.E., 2022, Performance evaluation of direct ethanol fuel cell using a three-dimensional CFD model, Fuel, 313, 123022.

[3] Nicolay, S., Karpuk, S., Liu, Y., and Elham, A., 2021, Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen, Int. J. Hydrogen Energy, 46 (64), 32676–32694.

[4] Perčić, M., Vladimir, N., Jovanović, I., and Koričan, M., 2022, Application of fuel cells with zero-carbon fuels in short-sea shipping, Appl. Energy, 309, 118463.

[5] Ferraren-De Cagalitan, D.D.T., and Abundo, M.L.S., 2021, A review of biohydrogen production technology for application towards hydrogen fuel cells, Renewable Sustainable Energy Rev., 151, 111413.

[6] Sigwadi, R., Dhlamini, M.S., Mokrani, T., Ṋemavhola, F., Nonjola, P.F., and Msomi, P.F., 2019, The proton conductivity and mechanical properties of Nafion®/ZrP nanocomposite membrane, Heliyon, 5 (8), e02240.

[7] Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K.T., and Lee, J.H., 2011, Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Prog. Polym. Sci., 36 (6), 813–843.

[8] Ayyubi, S.N., and Admaja, L., 2020, Pengaruh variasi konsentrasi montmorillonit terhadap sifat dan kinerja membran kitosan/PVA/MMT untuk aplikasi DMFC, Walisongo J. Chem., 3 (1), 1–9.

[9] Silitonga, R.S., Widiastuti, N., Jaafar, J., Ismail, A.F., Abidin, M.N.Z., Azelee, I.W., and Naidu, M., 2018, The modification of PVDF membrane via cross-linking with chitosan and glutaraldehyde as the cross-linking agent, Indones. J. Chem., 18 (1), 1–6.

[10] Dyartanti, E.R., Purwanto, A., Widiasa, I.N., and Susanto, H., 2018, Ionic conductivity and cycling stability improvement of PVDF/Nano-clay using PVP as polymer electrolyte membranes for LiFePo4 batteries, Membranes, 8 (3), 36.

[11] Abriyanto, H., 2021, Hydrophilic modification of PVDF membrane: A review, JMM, 1 (1), 1–9.

[12] Lu, J., Cheng, M., Zhao, C., Li, B., Peng, H., Zhang, Y., Shao, Q., and Hassan, M., 2022, Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives, Ind. Crops Prod., 176, 114267.

[13] Liu, Y., Mao, X., Wu, H., Wang, X., Shi, B., Fan, C., Kong, Y., and Jiang, Z., 2022, Sulfonated lignin intercalated graphene oxide membranes for efficient proton conduction, J. Membr. Sci., 644, 120126.

[14] Lupatini, K.N., Schaffer, J.V., Machado, B., Silva, E.S., Ellendersen, L.S.N., Muniz, G.I.B., Ferracin, R.J., and Alves, H.J., 2018, Development of chitosan membranes as a potential PEMFC electrolyte, J. Polym. Environ., 26 (7), 2964–2972.

[15] Ganguly, P., Sengupta, S., Das, P., and Bhowal, A., 2020, Valorization of food waste: Extraction of cellulose, lignin and their application in energy use and water treatment, Fuel, 280, 118581.

[16] Fatriasari, W., Ulwan, W., Aminingsih, T., Sari, F.P., Fitria, F., Suryanegara, L., Iswanto, A.H., Ghozali, M., Kholida, L.N., Hussin, M.H., Fudholi, A., and Hermiati, E., 2021, Optimization of maleic acid pretreatment of oil palm empty fruit bunches (OPEFB) using response surface methodology to produce reducing sugars, Ind. Crops Prod., 171, 113971.

[17] Zakaria, N.A., Hazwan Hussin, M., Ahmad, A.L., Leo, C.P., Poh, P.E., Behzadian, K., Akinwumi, I.I., Moghayedi, A., and Diazsolano, J., 2021, Lignin modified PVDF membrane with antifouling properties for oil filtration, J. Water Process Eng., 43, 102248.

[18] Ye, J., Cheng, Y., Sun, L., Ding, M., Wu, C., Yuan, D., Zhao, X., Xiang, C., and Jia, C., 2019, A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery, J. Membr. Sci., 572, 110–118.

[19] Setiati, R., Siregar, S., and Wahyuningrum, D., 2020, "Laboratory Optimization Study of Sulfonation Reaction toward Lignin Isolated from Bagasse" in Biotechnological Applications of Biomass, Eds., Basso, T.P., Basso, T.O., and Basso, L.C., IntechOpen, Rijeka, Croatia.

[20] Rocha, I., Ferraz, N., Mihranyan, A., Strømme, M., and Lindh, J., 2018, Sulfonated nanocellulose beads as potential immunosorbents, Cellulose, 25 (3), 1899–1910.

[21] Bărdacă Urducea, C., Nechifor, A.C., Dimulescu, I.A., Oprea, O., Nechifor, G., Totu, E.E., Isildak, I., Albu, P.C., and Bungău, S.G., 2020, Control of nanostructured polysulfone membrane preparation by phase inversion method, Nanomaterials, 10 (12), 2349.

[22] He, Z., Rault, F., Vishwakarma, A., Mohsenzadeh, E., and Salaün, F., 2022, High-aligned PVDF nanofibers with a high electroactive phase prepared by systematically optimizing the solution property and process parameters of electrospinning, Coatings, 12 (9), 1310.

[23] Grewal, M.S., Kisu, K., Orimo, S., and Yabu, H., 2022, Increasing the ionic conductivity and lithium-ion transport of photo-cross-linked polymer with hexagonal arranged porous film hybrids, iScience, 25 (9), 104910.

[24] Pradana, M.A., Ardhyananta, H., and Farid, M., 2017, Pemisahan selulosa dari lignin serat tandan kosong kelapa sawit dengan proses alkalisasi untuk penguat bahan komposit penyerap suara, Jurnal Teknik ITS, 6 (2), 413–416.

[25] Ganie, K., Manan, M.A., Ibrahim, A., and Idris, A.K., 2019, An Experimental approach to formulate lignin-based surfactant for enhanced oil recovery, Int. J. Chem. Eng., 2019, 4120859.

[26] Ismiyati, I., Suryani, A., Mangunwidjaya, D., Machfud, M., and Hambali, E., 2009, Pembuatan natrium lignosulfonat berbahan dasar lignin isolat tandan kosong kelapa sawit: Identifikasi, dan uji kinerjanya sebagai bahan pendispersi, J. Tek. Ind. Pert., 19 (1), 25–29.

[27] Karimov, O.K., Teptereva, G.A., Chetvertneva, I.A., Movsumzade, E.M., and Karimov, E.K., 2021, The structure of lignosulfonates for production of carbon catalyst support, IOP Conf. Ser.: Earth Environ. Sci., 839, 022086.

[28] Eraghi Kazzaz, A., Hosseinpour Feizi, Z., and Fatehi, P., 2019, Grafting strategies for hydroxy groups of lignin for producing materials, Green Chem., 21 (21), 5714–5752.

[29] Poletto, M., 2017, Assessment of the thermal behavior of lignins from softwood and hardwood species, Maderas: Cienc. Tecnol., 19 (1), 63–74.

[30] Ramezani, N., and Sain, M., 2018, Thermal and physiochemical characterization of lignin extracted from wheat straw by organosolv process, J. Polym. Environ., 26 (7), 3109–3116.

[31] Montoya-Ospina, M.C., Verhoogt, H., Ordner, M., Tan, X., and Osswald, T.A., 2022, Effect of cross-linking on the mechanical properties, degree of crystallinity and thermal stability of polyethylene vitrimers, Polym. Eng. Sci., 62 (12), 4203–4213.

[32] Yi, G., Li, J., Henderson, L.C., Lei, W., Du, L., and Zhao, S., 2022, Enhancing thermal conductivity of polyvinylidene fluoride composites by carbon fiber: Length effect of the filler, Polymers, 14 (21), 4599.

[33] Lusiana, R.A., Indra, A., Prasetya, N.B.A., Sasongko, N.A., Siahaan, P., Azmiyawati, C., Wijayanti, N., Wijaya, A.R., and Othman, M.H.D., 2021, The effect of temperature, sulfonation, and PEG addition on physicochemical characteristics of PVDF membranes and its application on hemodialysis membrane, Indones. J. Chem., 21 (4), 942–953.

[34] Li, W., Li, H., and Zhang, Y.M., 2009, Preparation and investigation of PVDF/PMMA/TiO2 composite film, J. Mater. Sci., 44 (11), 2977–2984.

[35] de Menezes, B.R.C., Ferreira, F.V., Silva, B.C., Simonetti, E.A.N., Bastos, T.M., Cividanes, L.S., and Thim, G.P., 2018, Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites, J. Mater. Sci., 53 (20), 14311–14327.

[36] Gao, M., Zhu, Y., Yan, J., Wu, W., and Wang, B., 2022, Micromechanism study of molecular compatibility of PVDF/PEI blend membrane, Membranes, 12 (8), 809.

[37] Bai, H., Wang, X., Zhou, Y., and Zhang, L., 2012, Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose, Prog. Nat. Sci.: Mater. Int., 22 (3), 250–257.

[38] Sui, Y., Chen, W.T., Ma, J.J., Hu, R.H., and Liu, D.S., 2016, Enhanced dielectric and ferroelectric properties in PVDF composite flexible films through doping with diisopropylammonium bromide, RSC Adv., 6 (9), 7364–7369.

[39] Cai, X., Lei, T., Sun, D., and Lin, L., 2017, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR, RSC Adv., 7 (25), 15382–15389.

[40] Teoh, G.H., Ooi, B.S., Jawad, Z.A., dan Low, S.C., 2021, Impacts of PVDF polymorphism and surface printing micro-roughness on superhydrophobic membrane to desalinate high saline water, J. Environ. Chem. Eng., 9 (4), 105418.

[41] Espiritu, R., Mamlouk, M., and Scott, K., 2016, Study on the effect of the degree of grafting on the performance of polyethylene-based anion exchange membrane for fuel cell application, Int. J. Hydrogen Energy, 41 (2), 1120–1133.

[42] Wang, M., Wang, L., Deng, N., Wang, X., Xiang, H., Cheng, B., and Kang, W., 2021, Electrospun multi-scale nanofiber network: Hierarchical proton-conducting channels in Nafion composite proton exchange membranes, Cellulose, 28 (10), 6567–6585.

[43] Zhai, S., Dai, W., Lin, J., He, S., Zhang, B., and Chen, L., 2019, Enhanced proton conductivity in sulfonated poly(ether ether ketone) membranes by incorporating sodium dodecyl benzene sulfonate, Polymers, 11 (2), 203.

[44] Lee, K.H., Chu, J.Y., Kim, A.R., and Yoo, D.J., 2019, Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application, Int. J. Energy Res., 43 (10), 5333–5345.



DOI: https://doi.org/10.22146/ijc.81750

Article Metrics

Abstract views : 1465 | views : 845


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.