The Dependence of Boron Concentration in Diamond Electrode for Ciprofloxacin Electrochemical Sensor Application
Ilmi Nur Indriani Savitri(1), Prastika Krisma Jiwanti(2*), Ilmanda Zalzabhila Danistya Putri(3), Irkham Irkham(4), Yasuaki Einaga(5), Ganden Supriyanto(6), Yew Hoong Wong(7), Sachin Kumar Srivastava(8), Che Azurahanim Che Abdullah(9)
(1) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
(2) Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
(3) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(5) Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
(6) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
(7) Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Center of Advanced Materials, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
(8) Department of Physics, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand 247667, India
(9) Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
(*) Corresponding Author
Abstract
This study investigates the effects of boron concentration on boron-doped diamond (BDD) electrodes for electrochemical sensors of ciprofloxacin. The effects of boron concentration, scan rate, and pH of BDD electrodes with boron concentrations of 0.1, 0.5, and 1% were examined to determine the optimal conditions. Furthermore, square wave voltammetry (SWV) in phosphate buffer pH 7 was used to analyze the electrochemical behavior of ciprofloxacin. The results revealed a linear calibration curve in the concentration range of 30–100 μM with a recovery of 85–110%. Meanwhile, BDD electrode with the highest boron concentration in this experiment (1%) showed a very low limit of detection of 0.17 μM, meaning that 1% BDD gave a highly sensitive and significant measurement result for the electrochemical sensor of ciprofloxacin. With the results given, this study provides new insights for controlling boron concentrations in diamond electrodes for the electrochemical sensors of quinolone antibiotics.
Keywords
References
[1] Zhang, G.F., Liu, X., Zhang, S., Pan, B., and Liu, M.L., 2018, Ciprofloxacin derivatives and their antibacterial activities, Eur. J. Med. Chem., 146, 599–612.
[2] Gayen, P., and Chaplin, B.P., 2016, Selective electrochemical detection of ciprofloxacin with a porous nafion/multi-walled carbon nanotube composite film electrode, ACS Appl. Mater. Interfaces, 8 (3), 1615–1626.
[3] Gissawong, N., Srijaranai, S., Boonchiangma, S., Uppachai, P., Seehamart, K., Jantrasee, S., Moore, E., and Mukdasai, S., 2021, An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent, Microchim. Acta, 188 (6), 208.
[4] Reddy, K.R., Brahman, P.K., and Suresh, L., 2018, Fabrication of high performance disposable screen printed electrochemical sensor for ciprofloxacin sensing in biological samples, Measurement, 127, 175–186.
[5] Faria, L.V., Pereira, J.F.S., Azevedo, G.C., Matos, M.A.C., Munoz, R.A.A., and Matos, R.C., 2019, Square-wave voltammetry determination of ciprofloxacin in pharmaceutical formulations and milk using a reduced graphene oxide sensor, J. Braz. Chem. Soc., 30, 1947–1954.
[6] Radičová, M., Behúl, M., Marton, M., Vojs, M., Bodor, R., Redhammer, R., and Vojs Staňová, A., 2017, Heavily boron doped diamond electrodes for ultra sensitive determination of ciprofloxacin in human urine, Electroanalysis, 29 (6), 1612–1617.
[7] Girardi, C., Greve, J., Lamshöft, M., Fetzer, I., Miltner, A., Schäffer, A., and Kästner, M., 2011, Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities, J. Hazard. Mater., 198, 22–30.
[8] Hu, X., Goud, K.Y., Kumar, V.S., Catanante, G., Li, H., Zhu, Z., and Marty, J.L., 2018, Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin, Sens. Actuators, B, 268, 278–286.
[9] Vella, J., Busuttil, F., Bartolo, N.S., Sammut, C., Ferrito, V., Serracino-Inglott, A., Azzopardi, L.M., and LaFerla, G., 2015, A simple HPLC-UV method for the determination of ciprofloxacin in human plasma, J. Chromatogr. B, 989, 80–85.
[10] Pascual-Reguera, M.I., Pérez Parras, G., and Molina Dı́az, A., 2004, A single spectroscopic flow-through sensing device for determination of ciprofloxacin, J. Pharm. Biomed. Anal., 35 (4), 689–695.
[11] Fotouhi, L., and Alahyari, M., 2010, Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode, Colloids Surf., B, 81 (1), 110–114.
[12] Xu, X., Liu, L., Jia, Z., and Shu, Y., 2015, Determination of enrofloxacin and ciprofloxacin in foods of animal origin by capillary electrophoresis with field amplified sample stacking–sweeping technique, Food Chem., 176, 219–225.
[13] Forster, R.J., Walsh, D., and Adamson, K., 2019, "Voltammetry | Overview" in Encyclopedia of Analytical Science, 3rd Ed., Eds. Spain, E., Worsfold, P., Poole, C., Townshend, A., and Miró, M., Academic Press, Oxford, UK, 209–217.
[14] Martin Santos, A., Wong, A., Araújo Almeida, A., and Fatibello-Filho, O., 2017, Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles, Talanta, 174, 610–618.
[15] Kawde, A.N., Aziz, M.A., Odewunmi, N., Hassan, N., and AlSharaa, A., 2014, Electroanalytical determination of antibacterial ciprofloxacin in pure form and in drug formulations, Arabian J. Sci. Eng., 39 (1), 131–138.
[16] Cinková, K., Andrejčáková, D., and Švorc, Ľ., 2016, Electrochemical method for point-of-care determination of ciprofloxacin using boron-doped diamond electrode, Acta Chim. Slovaca, 9 (2), 146–151.
[17] Xu, J., Natsui, K., Naoi, S., Nakata, K., and Einaga, Y., 2018, Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes, Diamond Relat. Mater., 86, 167–172.
[18] Jiwanti, P.K., and Einaga, Y., 2020, Further study of CO2 electrochemical reduction on palladium modified bdd electrode: Influence of electrolyte, Chem. - Asian J., 15 (6), 910–914.
[19] Diksy, Y., Rahmawati, I., Jiwanti, P.K., and Ivandini, T.A., 2020, Nano-Cu modified Cu and Nano-Cu modified graphite electrodes for chemical oxygen demand sensors, Anal. Sci., 36, 1323–1330.
[20] Putri, Y.M.T.A., Jiwanti, P.K., Irkham, I., Gunlazuardi, J., Einaga, Y., and Ivandini, T.A., 2021, Nickel-cobalt modified boron-doped diamond as an electrode for a urea/H2O2 fuel cell, Bull. Chem. Soc. Jpn., 94 (12), 2922–2928.
[21] Ivandini, T.A., Ariani, J., Jiwanti, P.K., Saepudin, E., and Einaga, Y., 2017, Electrochemical detection of neuraminidase based on zanamivir inhibition reaction at platinum and platinum-modified boron-doped diamond electrodes, Makara J. Sci., 21, 34–42.
[22] Song, Y., and Swain, G.M., 2007, Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode, Anal. Chim. Acta, 593 (1), 7–12.
[23] Watanabe, T., Honda, Y., Kanda, K., and Einaga, Y., 2014, Tailored design of boron-doped diamond electrodes for various electrochemical applications with boron-doping level and sp2-bonded carbon impurities, Phys. Status Solidi A, 211 (12), 2709–2717.
[24] dos Santos, A.J., Fortunato, G.V., Kronka, M.S., Vernasqui, L.G., Ferreira, N.G., and Lanza, M.R.V., 2021, Electrochemical oxidation of ciprofloxacin in different aqueous matrices using synthesized boron-doped micro and nano-diamond anodes, Environ. Res., 204, 112027.
[25] Schwarzová-Pecková, K., Vosáhlová, J., Barek, J., Šloufová, I., Pavlova, E., Petrák, V., and Zavázalová, J., 2017, Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes, Electrochim. Acta, 243, 170–182.
[26] Kingsley, M.P., Kalambate, P., and Srivastava, A.K., 2016, Simultaneous determination of ciprofloxacin and paracetamol by adsorptive stripping voltammetry using copper zinc ferrite nanoparticles modified carbon paste electrode, RSC Adv., 6 (18), 15101–15111.
[27] Zeng, Y., Chen, D., Chen, T., Cai, M., Zhang, Q., Xie, Z., Li, R., Xiao, Z., Liu, G., and Lv, W., 2019, Study on heterogeneous photocatalytic ozonation degradation of ciprofloxacin by TiO2/carbon dots: Kinetic, mechanism and pathway investigation, Chemosphere, 227, 198–206.
[28] Voigtman, E., 2017, Limits of Detection in Chemical Analysis, John Wiley & Sons, Hoboken, New Jersey, US.
[29] Švorc, Ĺ., Jambrec, D., Vojs, M., Barwe, S., Clausmeyer, J., Michniak, P., Marton, M., and Schuhmann, W., 2015, Doping level of boron-doped diamond electrodes controls the grafting density of functional groups for DNA assays, ACS Appl. Mater. Interfaces, 7 (34), 18949–18956.
[30] Matsunaga, T., Kondo, T., Osasa, T., Kotsugai, A., Shitanda, I., Hoshi, Y., Itagaki, M., Aikawa, T., Tojo, T., and Yuasa, M., 2020, Sensitive electrochemical detection of ciprofloxacin at screen-printed diamond electrodes, Carbon, 159, 247–254.
DOI: https://doi.org/10.22146/ijc.82135
Article Metrics
Abstract views : 1896 | views : 1011 | views : 548Copyright (c) 2023 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.