Simultaneous Analysis of Dopamine and Ascorbic Acid Using Polymelamine/Gold Nanoparticle-Modified Carbon Paste Electrode

https://doi.org/10.22146/ijc.83301

Muji Harsini(1*), Ainy Nur Farida(2), Erna Fitriany(3), Denok Risky Ayu Paramita(4), Afaf Baktir(5), Fredy Kurniawan(6), Satya Candra Wibawa Sakti(7), Yudhi Dwi Kurniawan(8), Bernadeta Ayu Widyaningrum(9)

(1) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Chemosensor and Biosensor Research Group, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
(2) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
(3) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Akademi Farmasi Mitra Sehat Mandiri, Jl. Ki Hajar Dewantara No. 200, Ngingas, Krian, Sidoarjo, East Java 61262, Indonesia
(4) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Jember Pharmacy Academy, Jl. Pangandaran 42, Antirogo, Sumbersari, Jember 68125, Indonesia
(5) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
(6) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Jl. Raya ITS, Keputih, Sukolilo, Surabaya 60111, Indonesia
(7) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
(8) Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong 16911, Indonesia
(9) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Research Center for Biomass and Bioproducts, National Research, and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong 16911, Indonesia
(*) Corresponding Author

Abstract


Modification of electrode using polymelamine (PM) and gold nanoparticles (AuNPs) has been successfully developed via electropolymerization and electrodeposition onto carbon paste electrode (CPE) using cyclic voltammetry (CV) technique. The modified electrode (AuNPs/PM/CPE) was applied as voltammetry sensors in a simultaneous of dopamine (DA) and ascorbic acid (AA). AuNPs/PM/CPE presented an effective surface area 5 times wider than CPE and demonstrated good electrocatalytic performance in the oxidation of DA and AA in 0.1 M phosphate buffer solution (pH 3) with a scan rate of 100 mV s−1. The differential pulse voltammetry (DPV) technique was chosen as the best method for separating potential peaks of DA and AA. The linear response for determining DA and AA using the DPV technique produced a concentration range of 0.1–13 and 0.4–12 µM with coefficient linearity of 0.9999 and 0.9997, the limit of detection of 0.1405 and 0.2187 µM, the accuracy of 89.62–109.16%, and 83.63–105.08%, and the precision of 0.017–0.701% and 0.066–0.626%, respectively. In addition, this electrode was applied in a real sample of infant urine with a concentration of 1 µM by spike method and found 98.86 and 98.28% as percent recovery of DA and AA, respectively.

Keywords


ascorbic acid; dopamine; gold nanoparticles; polymelamine; voltammetry

Full Text:

Full Text PDF


References

[1] Bacil, R.P., Chen, L., Serrano, S.H.P., and Compton, R.G., 2020, Dopamine oxidation at gold electrodes: mechanism and kinetics near neutral pH, Phys. Chem. Chem. Phys., 22 (2), 607–614.

[2] Franco, R., Reyes-Resina, I., and Navarro, G., 2021, Dopamine in health and disease: Much more than a neurotransmitter, Biomedicines, 9 (2), 109.

[3] Wise, R.A., and Robble, M.A., 2020, Dopamine and addiction, Annu. Rev. Psychol., 71, 79–106.

[4] Taei, M., Salavati, H., Hasanpour, F., Habibollahi, S., and Baghlani, H., 2016, Simultaneous determination of ascorbic acid, acetaminophen and codeine based on multi-walled carbon nanotubes modified with magnetic nanoparticles paste electrode, Mater. Sci. Eng., C, 69, 1–11.

[5] Kudur Jayaprakash, G., Swamy, B.E.K., Flores-Moreno, R., and Pineda-Urbina, K., 2023, Theoretical and cyclic voltammetric analysis of asparagine and glutamine electrocatalytic activities for dopamine sensing applications, Catalysts, 13 (1), 100.

[6] Wang, Z., Yue, H.Y., Huang, S., Yu, Z.M., Gao, X., Chen, H.T., Wang, W.Q., Song, S.S., Guan, E.H., and Zhang, H.J., 2019, Gold nanoparticles anchored onto three-dimensional graphene: Simultaneous voltammetric determination of dopamine and uric acid, Microchim. Acta, 186 (8), 573.

[7] Jang, H.S., Kim, D., Lee, C., Yan, B., Qin, X., and Piao, Y., 2019, Nafion coated Au nanoparticle-graphene quantum dot nanocomposite modified working electrode for voltammetric determination of dopamine, Inorg. Chem. Commun., 105, 174–181.

[8] Veera Manohara Reddy, Y., Sravani, B., Agarwal, S., Gupta, V.K., and Madhavi, G., 2018, Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, J. Electroanal. Chem., 820, 168–175.

[9] Sharifian, S., and Nezamzadeh-Ejhieh, A., 2016, Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid, Mater. Sci. Eng., C, 58, 510–520.

[10] Moretti, M., and Rodrigues, A.L.S., 2022, Functional role of ascorbic acid in the central nervous system: A focus on neurogenic and synaptogenic processes, Nutr. Neurosci., 25 (11), 2431–2441.

[11] Shen, Y., and Zheng, L., 2023, Polyaniline-poly (methylene blue) nano-rod composites as an electrochemical sensor for sensitive determination of ascorbic acid, Int. J. Electrochem. Sci., 18 (1), 6–12.

[12] Arvand, M., Pourhabib, A., and Giahi, M., 2017, Square wave voltammetric quantification of folic acid, uric acid and ascorbic acid in biological matrix, J. Pharm. Anal., 7 (2), 110–117.

[13] Jayaprakash, G.K., Kumara Swamy, B.E., Rajendrachari, S., Sharma, S.C., and Flores-Moreno, R., 2021, Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications, J. Mol. Liq., 334, 116348.

[14] Yang, G.J., Xu, J.J., Wang, K., and Chen, H.Y., 2006, Electrocatalytic oxidation of dopamine and ascorbic acid on carbon paste electrode modified with nanosized cobalt phthalocyanine particles: Simultaneous determination in the presence of CTAB, Electroanalysis, 18 (3), 282–290.

[15] Tashkhourian, J., Nezhad, M.R.H., Khodavesi, J., and Javadi, S., 2009, Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid, J. Electroanal. Chem., 633 (1), 85–91.

[16] Kumar, M., Wang, M., Kumara Swamy, B.E., Praveen, M., and Zhao, W., 2020, Poly (alanine)/NaOH/MoS2/MWCNTs modified carbon paste electrode for simultaneous detection of dopamine, ascorbic acid, serotonin and guanine, Colloids Surf., B, 196, 111299.

[17] Karimi-Maleh, H., and Arotiba, O.A., 2020, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid, J. Colloid Interface Sci., 560, 208–212.

[18] Wu, Y., Deng, P., Tian, Y., Feng, J., Xiao, J., Li, J., Liu, J., Li, G., and He, Q., 2020, Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite, J. Nanobiotechnol., 18 (1), 112.

[19] Baytak, A.K., and Aslanoglu, M., 2020, A novel sensitive method for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan using a voltammetric platform based on carbon black nanoballs, Arabian J. Chem., 13 (1), 1702–1711.

[20] Liu, Y., Lin, H.Y., Xu, N., and Wang, X.L., 2020, Two cobalt coordination polymers constructed from a flexible bis(pyridyl-tetrazole) and different tricarboxylates as electrocatalytic materials for the determination of ascorbic acid, Polyhedron, 179, 114358.

[21] Lokhande, R.V., Bhagure, G.R., Dherai, A.J., Naik, P.R., Udani, V.P., Desai, N.A., and Ashavaid, T.F., 2022, Analytical method validation for estimation of neurotransmitters (biogenic monoamines) from cerebrospinal fluid using high performance liquid chromatography, Indian J. Clin. Biochem., 37 (1), 85–92.

[22] Donmez, S., 2020, A novel electrochemical glucose biosensor based on a poly (L-aspartic acid)-modified carbon-paste electrode, Prep. Biochem. Biotechnol., 50 (9), 961–967.

[23] Joseph, T., and Thomas, N., 2020, Selective and sensitive determination of serotonin in the presence of ascorbic acid using zinc oxide reduced graphene oxide (ZnO/RGO) composite modified carbon paste electrode sensor, AIP Conf. Proc., 2263 (1), 040007.

[24] Joseph, T., and Thomas, N., 2021, A facile electrochemical sensor based on titanium oxide (TiO2)/reduced graphene oxide (RGO) nano composite modified carbon paste electrode for sensitive detection of epinephrine (EP) from ternary mixture, Mater. Today: Proc., 41, 606–609.

[25] Huang, X., Shi, W., Bao, N., Yu, C., and Gu, H., 2019, Electrochemically reduced graphene oxide and gold nanoparticles on an indium tin oxide electrode for voltammetric sensing of dopamine, Microchim. Acta, 186 (5), 310.

[26] Mahalakshmi, S., and Sridevi, V., 2021, In situ electrodeposited gold nanoparticles on polyaniline-modified electrode surface for the detection of dopamine in presence of ascorbic acid and uric acid, Electrocatalysis, 12 (4), 415–435.

[27] Soltani, N., Tavakkoli, N., Ahmadi, N., and Davar, F., 2015, Simultaneous determination of acetaminophen, dopamine and ascorbic acid using a PbS nanoparticles Schiff base-modified carbon paste electrode, C. R. Chim., 18 (4), 438–448.

[28] Shankar, S.S., Shereema, R.M., Ramachandran, V., Sruthi, T.V., Kumar, V.B.S., and Rakhi, R.B., 2019, Carbon quantum dot-modified carbon paste electrode-based sensor for selective and sensitive determination of adrenaline, ACS Omega, 4 (4), 7903–7910.

[29] Sunil Kumar Naik, T.S., Mwaurah, M.M., and Kumara Swamy, B.E., 2019, Fabrication of poly (sudan III) modified carbon paste electrode sensor for dopamine: A voltammetric study, J. Electroanal. Chem., 834, 71–78.

[30] Hatefi-Mehrjardi, A., Karimi, M.A., Soleymanzadeh, M., and Barani, A., 2020, Highly sensitive detection of dopamine, ascorbic and uric acid with a nanostructure of dianix yellow/multi-walled carbon nanotubes modified electrode, Measurement, 163, 107893.

[31] Tashkhourian, J., Valizadeh, H., and Abbaspour, A., 2019, Ascorbic acid determination based on electrocatalytic behavior of metal-organic framework MIL-101-(Cr) at modified carbon-paste electrode, J. AOAC Int., 102 (2), 625–632.

[32] Sağlam, Ş., Arman, A., Üzer, A., Ustamehmetoğlu, B., Sezer, E., and Apak, R., 2020, Selective electrochemical determination of dopamine with molecularly imprinted poly(carbazole-co-aniline) electrode decorated with gold nanoparticles, Electroanalysis, 32 (5), 964–970.

[33] Hareesha, N., and Manjunatha, J.G., 2020, Elevated and rapid voltammetric sensing of riboflavin at poly(helianthin dye) blended carbon paste electrode with heterogeneous rate constant elucidation, J. Iran. Chem. Soc., 17 (6), 1507–1519.

[34] Alemu, T., Zelalem, B., and Amare, N., 2022, Voltammetric determination of ascorbic acid content in cabbage using anthraquinone modified carbon paste electrode, J. Chem., 2022, 7154170.

[35] Soleymani, B., Zargar, B., and Rastegarzadeh, S., 2020, Over-oxidized carbon paste electrode modified with pretreated carbon nanofiber for the simultaneous detection of epinephrine and uric acid in the presence of ascorbic acid, J. Iran. Chem. Soc., 17 (5), 1013–1025.

[36] Farida, A.N., Fitriany, E., Baktir, A., Kurniawan, F., and Harsini, M., 2019, Voltammetric study of ascorbic acid using polymelamine/gold nanoparticle modified carbon paste electrode, IOP Conf. Ser.: Earth Environ. Sci., 217 (1), 012004.

[37] Harsini, M., Widyaningrum, B.A., Fitriany, E., Paramita, D.R.A., Farida, A.N., Baktir, A., Kurniawan, F., and Sakti, S.C.W., 2022, Electrochemical synthesis of polymelamine/gold nanoparticle modified carbon paste electrode as voltammetric sensor of dopamine, Chin. J. Anal. Chem., 50 (4), 100052.

[38] Wu, B., Yeasmin, S., Liu, Y., and Cheng, L.J., 2022, Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes, Sens. Actuators, B, 354, 131216.

[39] Ouedraogo, B., Baachaoui, S., Tall, A., Tapsoba, I., and Raouafi, N., 2023, Laser-induced graphene electrodes on polyimide membranes modified with gold nanoparticles for the simultaneous detection of dopamine and uric acid in human serum, Microchim. Acta, 190 (8), 1–13.

[40] Harsini, M., Fitriany, E., Farida, A.N., Suryaningrum, D., Asy’ari, D.N., Widyaningrum, B.A., Paramita, D.R.A., Baktir, A., and Kurniawan, F., 2021, Polymelamine/gold nanoparticle-modified carbon paste electrode as voltammetric sensor of uric acid, Malays. J. Anal. Sci., 25 (2), 286–295.

[41] Chandrashekar, B.N., Kumara Swamy, B.E., Pandurangachar, M., Sathisha, T.V., and Sherigara, B.S., 2011, Electropolymerisation of L-arginine at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, Colloids Surf., B, 88 (1), 413–418.

[42] Chandrashekar, B.N., and Kumara Swamy, B.E., 2012, Simultaneous cyclic voltammetric determination of norepinephrine, ascorbic acid and uric acid using TX-100 modified carbon paste electrode, Anal. Methods, 4 (3), 849–854.

[43] Li, H., Wang, X., and Yu, Z., 2014, Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode, J. Solid State Electrochem., 18 (1), 105–113.

[44] Rosy, R., and Goyal, R.N., 2015, Gold nanoparticles decorated poly-melamine modified glassy carbon sensor for the voltammetric estimation of domperidone in pharmaceuticals and biological fluids, Talanta, 141, 53–59.

[45] Chiniforoshan, H., Ensafi, A.A., Heydari-Bafrooei, E., Khalesi, S.B., and Tabrizi, L., 2015, Polymeric nanoparticle of copper(II)-4,4′-dicyanamidobiphenyl ligand: Synthetic, spectral and structural aspect; application to electrochemical sensing of dopamine and ascorbic acid, Appl. Surf. Sci., 347, 315–320.

[46] Zribi, R., Maalej, R., Gillibert, R., Donato, M.G., Gucciardi, P.G., Leonardi, S.G., and Neri, G., 2020, Simultaneous and selective determination of dopamine and tyrosine in the presence of uric acid with 2D-MoS2 nanosheets modified screen-printed carbon electrodes, FlatChem, 24, 100187.

[47] Darabi, R., Karimi-Maleh, H., Akin, M., Arikan, K., Zhang, Z., Bayat, R., Bekmezci, M., and Sen, F., 2023, Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor, Electrochim. Acta, 457, 142402.

[48] Peng, X., Xie, Y., Du, Y., Song, Y., and Chen, S., 2022, Simultaneous detection of ascorbic acid, dopamine and uric acid based on vertical N-doped carbon nanosheets/three-dimensional porous carbon, J. Electroanal. Chem., 904, 115850.

[49] Li, N.B., Ren, W., and Luo, H.Q., 2008, Simultaneous voltammetric measurement of ascorbic acid and dopamine on poly(caffeic acid)-modified glassy carbon electrode, J. Solid State Electrochem., 12 (6), 693–699.

[50] Kucukkolbasi, S., Erdogan, Z.O., Baslak, C., Sogut, D., and Kus, M., 2019, A highly sensitive ascorbic acid sensor based on graphene oxide/CdTe quantum dots-modified glassy carbon electrode, Russ. J. Electrochem., 55 (2), 107–114.

[51] Dhara, K., and Debiprosad, R.M., 2019, Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection, Anal. Biochem., 586, 113415.

[52] Chetankumar, K., Kumara Swamy, B.E., and Sharma, S.C., 2021, Safranin amplified carbon paste electrode sensor for analysis of paracetamol and epinephrine in presence of folic acid and ascorbic acid, Microchem. J., 160, 105729.

[53] Jackson, M.N., Pegis, M.L., and Surendranath, Y., 2019, Graphite-conjugated acids reveal a molecular framework for proton-coupled electron transfer at electrode surfaces, ACS Cent. Sci., 5 (5), 831–841.

[54] Gong, J., Tang, H., Wang, M., Lin, X., Wang, K., and Liu, J., 2022, Novel three-dimensional graphene nanomesh prepared by facile electro-etching for improved electroanalytical performance for small biomolecules, Mater. Des., 215, 110506.

[55] Shashikumara, J.K., and Swamy, B.E.K., 2020, Electrochemical investigation of dopamine in presence of Uric acid and ascorbic acid at poly (Reactive Blue) modified carbon paste electrode: A voltammetric study, Sens. Int., 1, 100008.

[56] Gosser, D.K.J., 1994, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms, VCH Publishers, New York, US.

[57] Wang, J., 2001, Analytical Electrochemistry, 2nd Ed., Wiley-VCH, New York, US.

[58] Aryal, S., Dharmaraj, N., Bhattarai, S.R., Khil, M.S., and Kim, H.Y., 2006, Deposition of gold nanoparticles on electrospun MgTiO3 ceramic nanofibers, J. Nanosci. Nanotechnol., 6 (2), 510–513.

[59] Shen, C., Chen, Y., Feng, B., Chi, H., and Zhang, H., 2022, Polypyrrole hollow nanotubes loaded with Au and Fe3O4 nanoparticles for simultaneous determination of ascorbic acid, dopamine, and uric acid, Chem. Res. Chin. Univ., 38 (4), 941–948.

[60] Gilbert, O., Kumara Swamy, B.E., Chandra, U., and Sherigara, B.S., 2009, Simultaneous detection of dopamine and ascorbic acid using polyglycine modified carbon paste electrode: A cyclic voltammetric study, J. Electroanal. Chem., 636 (1-2), 80–85.

[61] Yang, L., Liu, S., Zhang, Q., and Li, F., 2012, Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core–shell nanocomposites modified electrode, Talanta, 89, 136–141.

[62] Zheng, X., Zhou, X., Ji, X., Lin, R., and Lin, W., 2013, Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(4-aminobutyric acid) modified glassy carbon electrode, Sens. Actuators, B, 178, 359–365.

[63] Wang, H., Xiao, L.G., Chu, X.F., Chi, Y.D., and Yang, X.T., 2016, Rational design of gold nanoparticle/graphene hybrids for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Chin. J. Anal. Chem., 44 (12), e1617–e1625.

[64] Kaur, B., Pandiyan, T., Satpati, B., and Srivastava, R., 2013, Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode, Colloids Surf., B, 111, 97–106.

[65] Sheng, Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B., and Xia, X.H., 2012, Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 34 (1), 125–131.

[66] Ping, J., Wu, J., Wang, Y., and Ying, Y., 2012, Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode, Biosens. Bioelectron., 34 (1), 70–76.

[67] Zhao, D., Yu, G., Tian, K., and Xu, C., 2016, A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 82, 119–126.

[68] Wu, F., Huang, T., Hu, Y., Yang, X., Ouyang, Y., and Xie, Q., 2016, Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups, Microchim. Acta, 183 (9), 2539–2546.

[69] Arjmandi, A., Zare-Mehrjardi, H.R., and Kargar, H., 2018, Cis-dioxo-bis [3-methoxy-2,2-dimethylpropanediamine] molybdenum/surfactant-modified electrode for simultaneous sensing of ascorbic acid and dopamine, Acta Chim. Slov., 65 (1), 50–58.



DOI: https://doi.org/10.22146/ijc.83301

Article Metrics

Abstract views : 925 | views : 581


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.