Sodium Triphosphate Effect on Encapsulation of Vitamin B6 into Chitosan-Alginate Nanoparticles and Its In Vitro Drug Release Study

https://doi.org/10.22146/ijc.83380

Aulia Rahman(1), Suherman Suherman(2), Adhitasari Suratman(3*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


The in-vitro drug release study of vitamin B6 encapsulated into sodium tripolyphosphate crosslinked chitosan-alginate (B6-TCA) nanoparticles aims to determine the effect of sodium tripolyphosphate on the encapsulation efficiency of vitamin B6 and effectiveness of the nanoparticles to release vitamin B6. The focus of this research is synthesizing and characterizing TCA nanoparticles to encapsulate vitamin B6 as an effective delivery system by studying the kinetics release of vitamin B6. The research resulted in the formation of coarse solid powder nanoparticles in yellowish-white color with a nanoparticle size of 22.55 nm. Sodium tripolyphosphate decreased the percentage of encapsulation efficiency in the B6-TCA nanoparticles as its concentration increased. However, the increasing sodium tripolyphosphate causes a slower release of vitamin B6 from nanoparticles. The encapsulation efficiency of vitamin B6 is 82.04%. The optimum composition of B6-TCA nanoparticles ratio is 2:1:1.5:2, where Korsmeyer-Peppas kinetics model suited its better with the Fickian diffusion mechanism of 0.989 and has the smallest reaction rate constant of 0.039 occurred within 6 h.


Keywords


alginate; chitosan; nanoparticles; vitamin B6; sodium tripolyphosphate

Full Text:

Full Text PDF


References

[1] Danarto, Y.C., 2020, Studi Proses Mikroenkapsulasi Vitamin B2 (Riboflavin) dengan Alginat dan Kitosan, Dissertation, Department of Chemical Engineering, Universitas Gadjah Mada, Yogyakarta.

[2] Ravisankar, P., Reddy, A.A., Nagalakshmi, B., Sai Koushik, O., Vijaya Kumar, B., and Anvith, P.S., 2015, The comprehensive review on fat soluble vitamin, IOSR J. Pharm., 5 (11), 12–28.

[3] Vandamme, E.J., and Revuelta, J.L., 2016, Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants, Wiley-VCH, Weinheim, Germany.

[4] Chotimah, C., 2014, Kombinasi Spektrofotometri Ultraviolet dan Kalibrasi Multivariat untuk Analisis Metampiron, Vitamin B1, dan Vitamin B6 secara Simultan tanpa Pemisahan, Thesis, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta.

[5] Stach, K., Stach, W., and Augoff, K., 2021, Vitamin B6 in health and disease, Nutrients, 13 (9), 3229.

[6] Ribeiro, A.M., Estevinho, B.N., and Rocha, F., 2021, The progress and application of vitamin E encapsulation – A review, Food Hydrocolloids, 121, 106998.

[7] Khajouei, R.A., Keramat, J., Hamdami, N., Ursu, A.V., Delattre, C., Laroche, C., Gardarin, C., Lecerf, D., Desbrières, J., Djelveh, G., and Michaud, P., 2018, Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini, Int. J. Biol. Macromol., 118, 1073–1081.

[8] Hentati, F., Tounsi, L., Djomdi, D., Pierre, G., Delattre, C., Ursu, A.V., Fendri, I., Abdelkafi, S., and Michaud, P., 2020, Bioactive polysaccharides from seaweeds, Molecules, 25 (14), 3152.

[9] Sellimi, S., Younes, I., Ben Ayed, H., Maalej, H., Montero, V., Rinaudo, M., Dahia, M., Mechichi, T., Hajji, M., and Nasri, M., 2015, Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed, Int. J. Biol. Macromol., 72, 1358–1367.

[10] Liu, P., and Krishnan, T.R., 1999, Alginate-pectin-poly-L-lysine particulate as a potential controlled release formulation, J. Pharm. Pharmacol., 51 (2), 141–149.

[11] Reshad, R.A.I., Jishan, T.A., and Chowdhury, N.N., 2021, Chitosan and its broad applications: A brief review, J. Clin. Trials Exp. Invest., 12 (4), em00779.

[12] Gallo, M., Naviglio, D., Caruso, A.A., and Ferrara, L., 2016, “Applications of chitosan as a functional food” in Novel Approaches of Nanotechnology in Food, Academic Press, Cambridge, MA, US, 425–464.

[13] Morris, G.A., Kök, S.M., Harding, S.E., and Adams, G.G., 2010, Polysaccharide drug delivery systems based on pectin and chitosan, Biotechnol. Genet. Eng. Rev., 27 (1), 257–284.

[14] Nurmala, N., Suratman, A., and Suherman, S., 2023, Glutaraldehyde crosslinked alginate-chitosan nanoparticles as paracetamol adsorbent, Indones. J. Chem., 23 (6), 1542–1554.

[15] Mudhakir, D., Wibisono, C., and Rachmawati, H., 2014, Encapsulation of risperidone into chitosan-based nanocarrier via ionic binding interaction, Procedia Chem., 13, 92–100.

[16] Dzung, N.A., Hà, N.T.N., Van, D.T.H., Phuong, N.T.L., Quynh, N.T.N., Hiep, D.M., and Hiep, L. V., 2011, Chitosan nanoparticle as a novel delivery system for A/H1n1 influenza vaccine: Safe property and immunogenicity in mice, Int. J. Biotechnol. Bioeng., 5, 915–922.

[17] Sawaengsak, C., Mori, Y., Yamanishi, K., Mitrevej, A., and Sinchaipanid, N., 2014, Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine, AAPS PharmSciTech, 15 (2), 317–325.

[18] Dmour, I., and Taha, M.O., 2018, “Natural and semisynthetic polymers in pharmaceutical nanotechnology” in Organic Materials as Smart Nanocarriers for Drug Delivery, William Andrew Publishing, Norwich, NY, US, 35–100.

[19] Shaheen, T.I., Montaser, A.S., and Li, S., 2019, Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering, Int. J. Biol. Macromol., 121, 814–821.

[20] Othayoth, R., Mathi, P., Bheemanapally, K., Kakarla, L., and Botlagunta, M., 2015, Characterization of vitamin-cisplatin-loaded chitosan nano-particles for chemoprevention and cancer fatigue, J. Microencapsulation, 32 (6), 578–588.

[21] Shamszadeh, S., Akrami, M., and Asgary, S., 2022, Size-dependent bioactivity of electrosprayed core–shell chitosan-alginate particles for protein delivery, Sci. Rep., 12 (1), 20097.

[22] Karthikeyan, P., Banu, H.A.T., and Meenakshi, S., 2019, Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution, Int. J. Biol. Macromol., 130, 407–418.

[23] Kulig, D., Zimoch-Korzycka, A., Jarmoluk, A., and Marycz, K., 2016, Study on alginate–chitosan complex formed with different polymers ratio, Polymers, 8 (5), 167.

[24] Kunjumon, R., Viswanathan, G., and Baby, S., 2021, Biocompatible madecassoside encapsulated alginate chitosan nanoparticles, their anti-proliferative activity on C6 glioma cells, Carbohydr. Polym. Technol. Appl., 2, 100106.

[25] Ferreira Tomaz, A., Sobral de Carvalho, S.M., Cardoso Barbosa, R., Silva, S.M.L., Sabino Gutierrez, M.A., de Lima, A.G.B., and Fook, M.V.L., 2018, Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application, Materials, 11 (10), 2051.

[26] Rakhmaningtyas, W.A., 2012, Preparasi dan Karakterisasi Nanopartikel Sambung Silang Kitosan-Natrium Tripolifosfat dalam Sediaan Film Bukal Verapamil Hidroklorida, Thesis, Faculty of Pharmacy, Universitas Indonesia, Jakarta.

[27] Klojdová, I., Milota, T., Smetanová, J., and Stathopoulos, C., 2023, Encapsulation: A Strategy to deliver therapeutics and bioactive compounds?, Pharmaceuticals, 16 (3), 362.

[28] Bhujbal, S.V., de Vos, P., and Niclou, S.P., 2014, Drug and cell encapsulation: Alternative delivery options for the treatment of malignant brain tumors, Adv. Drug Delivery Rev., 67-68, 142–153.

[29] Cahyono, B., Suzery, M., Hadiyanto, H., and Bela Pratiwi, S., 2018, Encapsulation rutin with chitosan-NATPP using coaservation method, Reaktor, 17 (4), 215–220.

[30] Ramachandran, S., Nandhakumar, S., and Dhanaraju, M.D., 2011, Formulation and characterization of glutaraldehyde cross-linked chitosan biodegradable microspheres loaded with famotidine, Trop. J. Pharm. Res., 10 (3), 309–316.

[31] Wojtczak, E., Gadzinowski, M., Makowski, T., Maresz, K., Kubisa, P., Bednarek, M., and Pluta, M., 2018, Encapsulation of hydrophobic vitamins by polylactide stereocomplexation and their release study, Polym. Int., 67 (11), 1523–1534.



DOI: https://doi.org/10.22146/ijc.83380

Article Metrics

Abstract views : 47 | views : 4


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.