Organic Geochemical Characteristics of Ngrayong Formation Polaman Sediment Rock, Northeast Java Basin-Indonesia

https://doi.org/10.22146/ijc.83534

Yulfi Zetra(1*), Rafwan Year Perry Burhan(2), Sulistiyono Sulistiyono(3), Arizal Firmansyah(4), Darin Salsabila(5)

(1) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia
(2) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia
(3) Polytechnic of Energy and Mineral Akamigas, Jl. Gajah Mada No. 38, Cepu 58315, Indonesia
(4) Department of Chemistry Education, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang, Kampus 3, Ngaliyan, Semarang 50185, Indonesia
(5) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Surabaya 60111, Indonesia
(*) Corresponding Author

Abstract


A study of the sedimentary rocks of the Ngrayong formation has been carried out on five samples from the Polaman outcrop point to determine the potential of coal as a source rock for producing oil and gas through GC-MS analysis. Biomarker analysis shows the presence of n-alkanes (C16-C36) with a bimodal distribution, indicating that the source of organic material in sedimentary rocks comes from bacteria, algae, and vascular plants, which is supported by several parameters such as CPI, OEP, LHCPI, wax index, ACL and AlkTerr values. This dominant source of terrigenous organic matter is also proven by the TAR value, C31/C19, C29/C17 ratio, and several aromatic compounds and their derivatives. Bacterial input as an organic source of allouchtonic sedimentary rocks is also proven by the presence of hopanoid, de-A-lupane biomarkers, and C17/C31 ratio. The oxic deposition environment is indicated by the Pr/Ph ratio. CPI and OEP parameters, C29 bb/ab ratio > 0.15 and C31 22S/(22S+22R) < 1 indicate low maturity of the sediment sample. Several parameters and the presence of biomarkers stated above conclude that Ngrayong coal as a source rock has the potential to produce oil and gas.


Keywords


aliphatic hydrocarbons; aromatic hydrocarbons; biomarkers; Ngrayong formation; Polaman sediments

Full Text:

Full Text PDF


References

[1] Husein, S., Titisari, A.D., Freski, Y.R., and Utama, P.P., 2016, Buku Panduan Ekskursi Geologi Regional, Jawa Timur Bagian Barat, Indonesia, Department of Geological Engineering, Faculty of Engineering, UGM, Yogyakarta.

[2] Dhamayanti, E., Raharjanti, N.A., and Hartati, I.A., 2016, Dinamika Sedimentasi Singkapan Formasi Ngrayong dengan Analogi Lingkungan Pengendapan Modern, Studi Kasus Singkapan Polaman dan Braholo dengan Analogi Pesisir Pantai Utara Jawa, The 9th Seminar Nasional Kebumian, Grha Sabha Pramana, Yogyakarta, Indonesia, 6-7 October 2016, 725–735.

[3] Killops, S., and Killops, V., 2005, Introduction to Organic Geochemistry, 2nd Ed., Blackwell Publishers, Oxford, UK.

[4] Ajuaba, S., Sachsenhofer, R.F., Meier, V., Gross, D., Schnyder, J., Omodeo-Salé, S., Moscariello, A., and Misch, D., 2023, Coaly and lacustrine hydrocarbon source rocks in Permo-Carboniferous graben deposits (Weiach well, Northern Switzerland), Mar. Petrol. Geol., 150, 106147.

[5] Cieślik, E., and Fabiańska, M.J., 2021, Preservation of geochemical markers during co-combustion of hard coal and various domestic waste materials, Sci. Total Environ., 768, 144638.

[6] Zetra, Y., Burhan, R.Y.P., Pratama, A.D., and Wahyudi, A., 2020, Origin and maturity of biomarker aliphatic hydrocarbon in Wondama coal Indonesia, J. Idn. Chem. Soc., 3 (2), 107–116.

[7] Kumar, S., Dutta, S., and Bhui, U.K., 2021, Provenance of organic matter in an intracratonic rift basin: Insights from biomarker distribution in Palaeogene crude oils of Cambay Basin, western India, Org. Geochem., 162, 104329.

[8] Jiang, L. and George, S.C., 2018, Biomarker signatures of Upper Cretaceous Latrobe Group hydrocarbon source rocks, Gippsland Basin, Australia: Distribution and palaeoenvironment significance of aliphatic hydrocarbons, Int. J. Coal Geol., 196, 29–42.

[9] Zhu, Z., Li, M., Li, J., Qi, L., Liu, X., Xiao, H., and Leng, J., 2022, Identification, distribution and geochemical significance of dinaphthofurans in coals. Org. Geochem, 166, 104399.

[10] Nádudvari, Á., Misz-Kennan, M., Fabiańska, M., Ciesielczuk, J., Krzykawski, T., Simoneit, B.R.T., and Marynowski, L., 2023, Preservation of labile organic compounds in sapropelic coals from the Upper Silesian Coal Basin, Poland, Int. J. Coal Geol., 267, 104186.

[11] Fang, R., Littke, R., Zieger, L., Baniasad, A., Li, M., and Schwarzbauer, J., 2019, Changes of composition and content of tricyclic terpane, hopane, sterane, and aromatic biomarkers throughout the oil window: A detailed study on maturity parameters of Lower Toarcian Posidonia Shale of the Hils Syncline, NW Germany, Org. Geochem., 138, 103928.

[12] Jiang, L., and George, S.C., 2019, Biomarker signatures of Upper Cretaceous Latrobe Group petroleum source rocks, Gippsland Basin, Australia: Distribution and geological significance of aromatic hydrocarbons, Org. Geochem., 138, 103905.

[13] Simoneit, B.R.T., Oros, D.R., Karwowski, Ł., Szendera, Ł., Smolarek-Lach, J., Goryl, M., Bucha, M., Rybicki, M., and Marynowski, L., 2020, Terpenoid biomarkers of ambers from Miocene tropical paleoenvironments in Borneo and of their potential extant plant sources, Int. J. Coal Geol., 221, 103430.

[14] Nádudvari, Á., Forzese, M., Maniscalco, R., Di Stefano, A., Misz-Kennan, M., Marynowski, L., Krzykawski, T., and Simoneit, B.R.T., 2022, The transition toward the Messinian evaporites identified by biomarker records in the organic-rich shales of the Tripoli Formation (Sicily, Italy), Int. J. Coal Geol., 260, 104053.

[15] Körmös, S., Sachsenhofer, R.F., Bechtel, A., Radovics, B.G., Milota, K., and Schubert, F., 2021, Source rock potential, crude oil characteristics and oil-to-source rock correlation in a Central Paratethys sub-basin, the Hungarian Palaeogene Basin (Pannonian basin), Mar. Pet. Geol., 127, 104955.

[16] El-Sabagh, S.M., El-Naggar, A.Y., El Nady, M.M., Ebiad, M.A., Rashad, A.M., and Abdullah, E.S., 2018, Distribution of triterpanes and steranes biomarkers as indication of organic matters input and depositional environments of crude oils of oilfields in Gulf of Suez, Egypt, Egypt. J. Pet., 27 (4), 969–977.

[17] Lee, D.H., Kim, S.H., Choi, J., Kang, N.K., Hwang, I.G., and Shin, K.H., 2022, Geochemical signatures of organic matter associated with gas generation in the Pohang Basin, South Korea, Geosci. J., 26 (5), 555–567.

[18] Chen, Q., Guo, Z., Yu, M., Sachs, J.P., Hou, P., Li, L., Jin, G., Liu, Y., and Zhao, M., 2021, Lipid biomarker estimates of seasonal variations of aerosol organic carbon sources in coastal Qingdao, China, Org. Geochem., 151, 104148.

[19] Zetra, Y., Burhan, R.Y.P., Firdaus, A.W., Nugrahaeni, Z.V., and Gunawan, T., 2021, Characteristics of Cepu block oil, Wonocolo formation, East Java Indonesia: Study of aliphatic biomarkers, AIP Conf. Proc., 2349 (1), 020040.

[20] Pang, S.Y., Suratmman, S., Tay, J.H., and Mohd Tahir, N., 2021, Investigation of aliphatic and polycyclic aromatic hydrocarbons in surface sediments of Brunei Bay, East Malaysia, Asian J. Chem., 33 (2), 439–446.

[21] de Sousa, A.A.C., Sousa, E.S., Rocha, M.S., Sousa Junior, G.R., de Souza, I.V.A.F., Brito, A.S., Souza, S.S., Lopes, J.A.D., Nogueira, A.C.R., and de Lima, S.G., 2020, Aliphatic and aromatic biomarkers of the Devonian source rocks from the Western Parnaíba Basin Brazil: Pimenteiras formation, J. South Am. Earth Sci., 99, 102493.

[22] Jin, J., Guo, H., Gao, Z., Mao, R., and Lu, H., 2022, Biodegradation of dissolved organic matter and sedimentary organic matter in high arsenic groundwater system: Evidence from lipid biomarkers and compound-specific carbon isotopes, Chem. Geol., 612, 121140.

[23] Kang, S., Shao, L., Qin, L., Li, S., Liu, J., Shen, W., Chen, X., Eriksson, K.A., and Zhou, Q., 2020, Hydrocarbon generation potential and depositional setting of Eocene oil-prone coaly source rocks in the Xihu Sag, East China Sea Shelf Basin, ACS Omega, 5 (50), 32267–32285.

[24] Patra, S., Dirghangi, S.S., Rudra, A., Dutta, S., Ghosh, S., Varma, A.K., Shome, D., and Kalpana, M.S., 2018, Effects of thermal maturity on biomarker distributions in Gondwana coals from the Satpura and Damodar Valley Basins, India, Int. J. Coal Geol., 196, 63–81.

[25] Herrera-Herrera, A.V., Leierer, L., Jambrina-Enríquez, M., Connolly, R., and Mallol, C., 2020, Evaluating different methods for calculating the Carbon Preference Index (CPI): Implications for palaeoecological and archaeological research, Org. Geochem., 146, 104056.

[26] Yu, X., Lü, X., Meyers, P.A., and Huang, X., 2021, Comparison of molecular distributions and carbon and hydrogen isotope compositions of n-alkanes from aquatic plants in shallow freshwater lakes along the middle and lower reaches of the Yangtze River, China, Org. Geochem., 158, 104270.

[27] Bliedtner, M., Schäfer, M.I.K., Zech, R., and von Suchodoletz, H., 2018, Leaf wax n-alkanes in modern plants and topsoils from eastern Georgia (Caucasus) – Implications for reconstructing regional paleovegetation, Biogeosciences, 15 (12), 3927–3936.

[28] Ceccopieri, M., Scofield, A.L., Almeida, L., and Wagener, A.L.R., 2018, Compound-specific δ13C of n-alkanes: Clean-up methods appraisal and application to recent sediments of a highly contaminated bay, J. Braz. Chem. Soc., 29 (11), 2363–2377.

[29] Ratheesh Kumar, C.S., Renjith, K.R., Joseph, M.M., Salas, P.M., Resmi, P., and Chandramohanakumar, N., 2019, Inventory of aliphatic hydrocarbons in a tropical mangrove estuary: A biomarker approach, Environ. Forensics, 20 (4), 370–384.

[30] Imfeld, A., Ouellet, A., Douglas, P.M.J., Kos, G., and Gélinas, Y., 2022, Molecular and stable isotope analysis (δ13C, δ2H) of sedimentary n-alkanes in the St. Lawrence Estuary and Gulf, Quebec, Canada: Importance of even numbered n-alkanes in coastal systems, Org. Geochem., 164, 104367.

[31] Zou, Y., Wang, C., Liu, X., and Wang, H., 2022, Spatial distribution, compositional pattern and source apportionment of n-alkanes in surface sediments of the Bohai Sea, Yellow Sea, and East China Sea and implications of carbon sink, Mar. Pollut. Bull., 178, 113639.

[32] Özdemir, A., Palabiyik, Y., Karataş, A., and Şahinoğlu, A., 2022, Mature petroleum hydrocarbons contamination in surface and subsurface waters of Kızılırmak Graben (Central Anatolia, Turkey): Geochemical evidence for a working petroleum system associated with a possible salt diapir, Turk. J. Eng., 6 (1), 1–15.

[33] Zhu, Z., Li, M., Li, J., Qi, L., Liu, X., Xiao, H., and Leng, J., 2022, Identification, distribution and geochemical significance of dinaphthofurans in coals, Org. Geochem., 166, 104399.

[34] Al-Areeq, N.M., Al-Badani, M.A., Salman, A.H., and Albaroot, M.A., 2018, Petroleum source rocks characterization and hydrocarbon generation of the Upper Jurassic succession in Jabal Ayban field, Sabatayn Basin, Yemen, Egypt. J. Pet., 27 (4), 835, 835–851.

[35] Wang, N., Xu, Y., Li, W., Wang, F., Chen, G., Liu, Y., Cheng, R., and Liu, H., 2022, The compositions of biomarkers and macerals in the first member of the Shahejie Formation in the Liaodong Bay subbasin, Bohai Bay Basin: Implications for biological sources and seawater incursions, J. Pet. Sci. Eng., 218, 110947.

[36] Schaeffer, P., Bailly, L., Motsch, E., and Adam, P., 2019, The effects of diagenetic aromatization on the carbon and hydrogen isotopic composition of higher plant di- and triterpenoids: Evidence from buried wood, Org. Geochem., 136, 103889.

[37] Lopes, A.A., Pereira, V.B., Amora-Nogueira, L., Marotta, H., Moreira, L.S., Cordeiro, R.C., Vanini, G., and Azevedo, D.A., 2021, Hydrocarbon sedimentary organic matter composition from different water-type floodplain lakes in the Brazilian Amazon, Org. Geochem., 159. 104287.

[38] Greenwood, P.F., Shan, C., Holman, A.I., and Grice, K., 2018, The composition and radiolysis impact on aromatic hydrocarbons in sedimentary organic matter from the Mulga Rock (Australia) uranium deposit, Org. Geochem., 123, 103–112.

[39] Wang, N., Xu, Y.H., Wang, F.L., Liu, Y., Huang, Q., and Huang, X., 2022, Identification and geochemical significance of unusual C24 tetracyclic terpanes in Shahejie Formation source rocks in the Bozhong subbasin, Bohai Bay Basin, Pet. Sci., 19 (5), 1993–2003.

[40] Xu, M., Hou, D., Lin, X., Liu, J., Ding, W., and Xie, R., 2022, Organic geochemical signatures of source rocks and oil-source correlation in the Papuan Basin, Papua New Guinea, J. Pet. Sci. Eng., 210, 109972.

[41] Kumar, D., Ghosh, S., Tiwari, B., Varma, A.K., Mathews, R.P., and Chetia, R., 2021, Palaeocene-Eocene organic sedimentary archives of Bikaner-Nagaur Basin, Rajasthan, India: An integrated revelation from biogeochemical and elemental proxies, Int. J. Coal Geol., 247, 103848.

[42] Morgunova, I., Kursheva, A., Petrova, V., Litvinenko, I., Batova, G., and Renaud, P., 2019, Hydrocarbon Monitoring in Coastal Sediments and Soils Around the City of Tromsø: Complex Molecular Geochemical Approach, The 29th International Meeting on Organic Geochemistry (IMOG), European Association of Organic Geochemist, Gothenburg, Sweden, 1-6 September 2019, 1–2.

[43] Synnott, D.P., Schwark, L., Dewing, K., Percy, E.L., and Pedersen, P.K., 2021, The diagenetic continuum of hopanoid hydrocarbon transformation from early diagenesis into the oil window, Geochim. Cosmochim. Acta, 308, 136–156.

[44] Liu, B., Vrabec, M., Markič, M., and Püttmann, W., 2019, Reconstruction of paleobotanical and paleoenvironmental changes in the Pliocene Velenje Basin, Slovenia, by molecular and stable isotope analysis of lignites, Int. J. Coal Geol., 206, 31–45.

[45] Cordova-Gonzalez, A., Birgel, D., Kappler, A., and Peckmann, J., 2020, Carbon stable isotope patterns of cyclic terpenoids: A comparison of cultured alkaliphilic aerobic methanotrophic bacteria and methane-seep environments, Org. Geochem., 139, 103940.

[46] Samad, S.K., Mishra, D.K., Mathews, R.P., Ghosh, S., Mendhe, V.A., and Varma, A.K., 2020, Geochemical attributes for source rock and palaeoclimatic reconstruction of the Auranga Basin, India, J. Pet. Sci. Eng., 185, 106665.

[47] Nakamura, H., 2019, Plant-derived triterpenoid biomarkers and their applications in paleoenvironmental reconstructions: chemotaxonomy, geological alteration, and vegetation reconstruction, Org. Geochem., 35 (2), 11–35.

[48] French, K.L., Birdwell, J.E., and Whidden, K.J., 2019, Geochemistry of a thermally immature Eagle Ford Group drill core in central Texas, Org. Geochem., 131, 19–33.

[49] Plet, C., Grice, K., Scarlett, A.G., Ruebsam, W., Holman, A.I., and Schwark, L., 2020, Aromatic hydrocarbons provide new insight into carbonate concretion formation and the impact of eogenesis on organic matter, Org. Geochem., 143, 103961.

[50] French, K.L., Birdwell, J.E., and Vanden Berg, M.D., 2020, Biomarker similarities between the saline lacustrine Eocene Green River and the Paleoproterozoic Barney Creek Formations, Geochim. Cosmochim. Acta, 274, 228–245.

[51] Xiao, H., Li, M., Wang, T., You, B., Lu, X., and Wang, X., 2022, Organic molecular evidence in the ~1.40 Ga Xiamaling Formation black shales in North China Craton for biological diversity and paleoenvironment of mid-Proterozoic ocean, Precambrian Res., 381, 106848.

[52] Ghosh, S., Dutta, S., Bhattacharyya, S., Konar, R., and Priya, T., 2022, Paradigms of biomarker and PAH distributions in lower Gondwana bituminous coal lithotypes, Int. J. Coal Geol., 260, 104067.

[53] Jiang, L., Ding, W., and George, S.C., 2020, Late Cretaceous–Paleogene palaeoclimate reconstruction of the Gippsland Basin, SE Australia, Palaeogeogr., Palaeoclimatol., Palaeoecol., 556, 109885.

[54] Kumar, S., and Dutta, S., 2021, Utility of comprehensive GC×GC-TOFMS in elucidation of aromatic hydrocarbon biomarkers, Fuel, 283, 118890.

[55] Burhan, R.Y.P., Zetra, Y., and Amini, Y.A., 2020, Paleoenvironmental and maturity indicator of Cepu Block Oil, Wonocolo Formation, East Java Indonesia, Jurnal Teknologi, 82 (5), 173–182.

[56] Murillo, W.A., Horsfield, B., and Vieth-Hillebrand, A., 2019, Unraveling petroleum mixtures from the South Viking Graben, North Sea: A study based on δ13C of individual hydrocarbons and molecular data, Org. Geochem., 137, 103900.

[57] Lopes Martins, L., Schulz, H.M., Portugal Severiano Ribeiro, H.J., Adolphsson do Nascimento, C., Soares de Souza, E., and Feitosa da Cruz, G., 2020, Cadalenes and norcadalenes in organic-rich shales of the Permian Irati Formation (Paraná Basin, Brazil): Tracers for terrestrial input or also indicators of temperature-controlled organic-inorganic interactions, Org. Geochem., 140, 103962.

[58] Petersen, H.I., Fyhn, M.B.W., Nytoft, H.P., Dybkjær, K., and Nielsen, L.H., 2022, Miocene coals in the Hanoi trough, onshore northern Vietnam: Depositional environment, vegetation, maturity, and source rock quality, Int. J. Coal Geol., 253, 103953.

[59] Li, Z., Huang, H., and George, S.C., 2022, Organic Geochemistry Unusual occurrence of alkylnaphthalene isomers in upper Eocene to Oligocene sediments from the western margin of Tasmania, Australia, Org. Geochem., 168, 104418.

[60] Ding, W., Hou, D., Gan, J., Zhang, Z., and George, S.C., 2022, Aromatic hydrocarbon signatures of the late Miocene-early Pliocene in the Yinggehai Basin, South China Sea: Implications for climate variations, Mar. Petrol. Geol., 142, 105733.

[61] Simoneit, B.R.T., Otto, A., Menor-Sálvan, C., Oros, D.R., Wilde, V., and Riegel, W., 2021, Composition of resinites from the Eocene Geiseltal brown coal basin, Saxony-Anhalt, Germany and comparison to their possible botanical analogues, Org. Geochem., 152, 104138.

[62] Lu, Z., Li, Q., Ju, Y., Gu, S., Xia, P., Gao, W., Yan, Z., and Gong, C., 2022, Biodegradation of coal organic matter associated with the generation of secondary biogenic gas in the Huaibei Coalfield, Fuel, 323, 124281.

[63] Walters, C.C., Wang, F.C., Higgins, M.B., and Madincea, M.E., 2018, Universal biomarker analysis: Aromatic hydrocarbon, Org. Geochem., 124, 205–214.

[64] Wakeham, S.G., and Canuel, E.A., 2016, Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation, Environ. Sci. Pollut. Res., 23 (11), 10426–10442.

[65] El Diasty, W.S., Peters, K.E., Moldowan, J.M., Essa, G.I., and Hammad, M.M., 2020, Organic geochemistry of condensates and natural gases in the northwest Nile Delta offshore Egypt, J. Pet. Sci. Eng., 187, 106819.

[66] Jaroszewicz, E., Bojanowski, M., Marynowski, Łoziński, M.L., and Wysocka, A., 2018, Paleoenvironmental conditions, source and maturation of Neogene organic matter from the siliciclastic deposits of the Orava-Nowy Targ Basin, Int. J. Coal Geol., 196, 288–301.



DOI: https://doi.org/10.22146/ijc.83534

Article Metrics

Abstract views : 520 | views : 252


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.