Fabrication of Nanocomposite Membrane with Nanomaterial Filler for Desalination


Muhammad Nur Alam(1), Indah Raya(2*), Ahyar Ahmad(3), Paulina Taba(4), Suriati Eka Putri(5), Harningsih Karim(6)

(1) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 20, Makassar 90245, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Jl. Daeng Tata, Makassar 90244, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 20, Makassar 90245, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 20, Makassar 90245, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 20, Makassar 90245, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Jl. Daeng Tata, Makassar 90244, Indonesia
(6) Department of Pharmacy, School of Pharmacy YAMASI, Jl. Mapala 2 Blok D5 No. 10, Makassar 90222, Indonesia
(*) Corresponding Author


This review aims to provide a complete overview on the modification of polymer and biopolymer membranes into nanocomposite membrane materials. Fabrication of nanocomposite membranes is carried out by incorporating inorganic filler materials in nanoparticle sizes. Nanomaterials refer to the class of materials that consist of particulate substances with any dimension of less than 100 nm at least. The properties of nanomaterials include large specific surface area, crystalline structure, shape (that regulates most of its properties as well as their unique attributes), surface morphology, and assembling phenomena. This review primarily concentrates on the recent nanotechnology-based practices to enrich the outcomes of desalination on the footings of nanocomposites, developed practicing distinct nanomaterials. A classification for various forms of nanomaterials used for building nanocomposites has also been illustrated. Special emphasis has been given to the usage of nanocomposites constructed from several nanomaterials such as nanoparticles, nanotubes, nanoshells, nanofibers, nanocapsules, nanosheets and quantum dots, and how these nanocomposites have been utilized for desalination.


desalination; filler; membrane; nanocomposite; nanomaterials

Full Text:

Full Text PDF


[1] Saiful, S., Hasima, S., Kamila, N., and Rahmi, R., 2022, Cellulose acetate from palm oil bunch waste for forward osmosis membrane in desalination of brackish water, Results Eng., 15, 100611.

[2] Nurman, S., Saiful, S., Rahmi, R., and Ginting, B., 2022, Red seaweed (Gracilaria verrucosa Greville) based polyurethane, Polymers, 14 (8), 1572.

[3] Ünlü, D., 2020, Pervaporative desalination of water using hydroxypropyl methylcellulose/polyvinylpyrrolidone blend membranes, Membranes, 4 (1), 35–43.

[4] Ward, L.M., Fickling, B.G., and Weinman, S.T., 2021, Effect of nanopatterning on concentration polarization during nanofiltration, Membranes, 11 (12), 961.

[5] Alsuhybani, M., Alshahrani, A., and Haidyrah, A.S., 2020, Synthesis, characterization, and evaluation of evaporated casting MWCNT/chitosan composite membranes for water desalination, J. Chem., 2020, 5207680.

[6] Potla Durthi, C., Rajulapati, S.B., Palliparambi, A.A., Kola, A.K., and Sonawane, S.H., 2018, Studies on removal of arsenic using cellulose acetate–zinc oxide nanoparticle mixed matrix membrane, Int. Nano Lett., 8 (3), 201–211.

[7] Warsinger, D.M., Mistry, K.H., Nayar, K.G., Chung, H.W., and Lienhard, J.H., 2015, Entropy generation of desalination powered by variable temperature waste heat, Entropy, 17 (11), 7530–7566.

[8] Kuzmenkov, D.M., Struchalin, P.G., Olkhovskii, A.V., Yunin, V.S., Kutsenko, K.V., and Balakin, B.V., 2021, Solar-driven desalination using nanoparticles, Energies, 14 (18), 5743.

[9] Rong, Y., Yang, J., Huang, S., and Li, Y., 2022, Barium hydroxide nanoparticle-phosphoric acid system for desalination and consolidation of tomb murals, Crystals, 12 (8), 1171.

[10] Jia, P., Du, X., Chen, R., Zhou, J., Agostini, M., Sun, J., and Xiao, L., 2021, The combination of 2D layered graphene oxide and 3D porous cellulose heterogeneous membranes for nanofluidic osmotic power generation, Molecules, 26 (17), 5343.

[11] Al Mayyahi, A., 2018, TiO2 polyamide thin film nanocomposite reverses osmosis membrane for water desalination, Membranes, 8 (3), 66.

[12] Yasin, A.S., Mohamed, A.Y., Kim, D., Yoon, S., Ra, H., and Lee, K., 2021, Efficiency enhancement of electro-adsorption desalination using iron oxide nanoparticle-incorporated activated carbon nanocomposite, Micromachines, 12 (10), 1148.

[13] Zhou, Z., Li, X., Shinde, D.B., Sheng, G., Lu, D., and Li, P., 2020, Tuning the surface structure of polyamide membranes using porous carbon nitride nanoparticles for high-performance seawater desalination, Membranes, 10 (8), 163.

[14] Asempour, F., Emadzadeh, D., Matsuura, T., and Kruczek, B., 2018, Synthesis and characterization of novel cellulose nanocrystals-based thin film nanocomposite membranes for reverse osmosis applications, Desalination, 439, 179–187.

[15] Bai, L., Liu, Y., Ding, A., Ren, N., Li, G., and Liang, H., 2019, Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal, Chem. Eng. J., 358, 1519–1528.

[16] Smith, E.D., Hendren, K.D., Haag, J.V., Foster, E.J., and Martin, S.M., 2019, Functionalized cellulose nanocrystal nanocomposite membranes with controlled interfacial transport for improved reverse osmosis performance, Nanomaterials, 9 (1), 125.

[17] Mohammed, N., Grishkewich, N., and Tam, K.C., 2018, Cellulose nanomaterials: Promising sustainable nanomaterials for application in water/wastewater treatment processes, Environ. Sci.: Nano, 5 (3), 623–658.

[18] Kadhom, M., and Deng, B., 2019, Thin film nanocomposite membranes filled with bentonite nanoparticles for brackish water desalination: A novel water uptake concept, Microporous Mesoporous Mater., 279, 82–91.

[19] Pour Amini, Z., Babapoor, A., 2022, Using nanomembrane to heavy metal removal from wastewater: A mini-review, Adv. Appl. NanoBio-Technol., 3 (1), 7–13.

[20] Batool, M., Shafeeq, A., Haider, B., and Ahmad, N.M., 2021, TiO2 Nanoparticle filler-based mixed-matrix PES/CA nanofiltration membranes for enhanced desalination, Membranes, 11 (6), 433.

[21] Li, T., Wang, Y., Wang, X., Cheng, C., Zhang, K., Yang, J., Han, G., Wang, Z., Wang, X., and Wang, L., 2022, Desalination characteristics of cellulose acetate FO membrane incorporated with ZIF-8 nanoparticles, Membranes, 12 (2), 122.

[22] Xie, Q., Zhang, S., Ma, H., Shao, W., Gong, X., and Hong, Z., 2018, A novel thin-film nanocomposite nanofiltration membrane by incorporating 3D hyperbranched polymer functionalized 2D graphene oxide, Polymers, 10 (11), 1253.

[23] Ou, C., Li, S., Wang, Z., Qin, J., Wang, Q., Liao, Z., and Li, J., 2021, organic nanobowls modified thin film composite membrane for enhanced purification performance toward different water resources, Membranes, 11 (5), 350.

[24] Seyfollahi, M., Etemadi., H., Yegani, R., Rabeii, M., and Shokri, E., 2019, The effect of polyethylene glycol grafted nanodiamond on antifouling properties of cellulose acetate membrane for removal of BSA from contaminated water, J. Water Environ. Nanotechnol., 4 (1), 1–16.

[25] Wang, Z., Wang, Z., Lin, S., Jin, H., Gao, S., Zhu, Y., and Jin, J., 2018, Nanoparticle templated nanofiltration membranes for ultrahigh performance desalination, Nat. Commun., 9 (1), 2004.

[26] Firdaus, I.M., Febiyanto, F., Fitriany, T., Zulhidayah, L.Z., Septiarini, D.A., and Wibowo, O.D., 2019, Synthesis of cellulose acetate-polystyrene membrane composites from pineapple peel wastes for methylene blue removal, Al-Kimia, 7 (2), 113–125.

[27] Jamil, T.S., Nasr, R.A., Abbas, H.A., Ragab, T.I.M., Xabela, S., and Moutloali, R., 2022, Low-cost high performance polyamide thin film composite (cellulose triacetate/graphene oxide) membranes for forward osmosis desalination from palm fronds, Membranes, 12 (1), 6.

[28] Alghamdi, A.M., 2021, Fast and versatile pathway in fabrication of polyelectrolyte multilayer nanofiltration membrane with tunable properties, J. Chem., 2021, 9978596.

[29] Henry, C.J., and Brant, J.A., 2019, Influence of membrane characteristics on performance in soil-membrane-water subsurface desalination irrigation systems, J. Water Process Eng., 32, 100984.

[30] Anis, S.F., Hashaikeh, R., and Hilal, N., 2019, Flux and salt rejection enhancement of polyvinyl(alcohol) reverse osmosis membranes using nano-zeolite, Desalination, 470, 14104.

[31] Loske, L., Nakagawa, K., Yoshioka, T., and Matsuyama, H., 2020, 2D Nanocomposite membranes: Water purification and fouling mitigation, Membranes, 10 (10), 295.

[32] Shen, S., Hao, Y., Zhang, Y., Zhang, G., Zhou, X., and Bai, R.B., 2018, Enhancing the antifouling properties of poly(vinylidene fluoride) (PVDF) membrane through a novel blending and surface-grafting modification approach, ACS Omega, 3 (12), 17403–17415.

[33] Mo, Y., Xue, P., Yang, Q., Liu, H., Zhao, X., Wang, J., Jin, M., and Qi, Y., 2021, Composite slow-release fouling release coating inspired by synergistic anti-fouling effect of scaly fish, Polymers, 13 (16), 2602.

[34] Abdulhamid, M.A., Park, S.H., Vovusha, H., Akhtar, F.H., Ng, K.C., Schwingenschlögl, U., and Szekely, G., 2020, Molecular engineering of high-performance nanofiltration membranes from intrinsically microporous poly(ether-ether-ketone), J. Mater. Chem. A, 8 (46), 24445–24454.

[35] Liu, T.Y., Yuan, H.G., Liu, Y.Y., Ren, D., Su, Y.C., and Wang, X., 2018, Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity, ACS Nano, 12 (9), 9253–9265.

[36] Ma, F., Ye, H., Zhang, Y.Z., Ding, X.L., Lin, L.G., Zhao, L., and Li, H., 2014, The effect of polymer concentration and additives of cast solution on performance of polyethersulfone/sulfonated polysulfone blend nanofiltration membranes, Desalin. Water Treat., 52 (4-6), 618–625.

[37] Yang, Z., Ma, Y., Zhao, H., Yuan, Y., and Kim, B.Y.S., 2020, Nanotechnology platforms for cancer immunotherapy, WIREs Nanomed. Nanobiotechnol., 12 (2), e1590.

[38] Anjum, T., Tamime, R., and Khan, A.L., 2020, Mixed-matrix membranes comprising of polysulfone and porous UiO-66, zeolite 4A, and their combination: Preparation, removal of humic acid, and antifouling properties, Membranes, 10 (12), 393.

[39] Shim, H.E., Yang, J.E., Jeong, S.W., Lee, C.H., Song, L., Mushtaq, S., Choi, D.S., Choi, Y.J., and Jeon, J., 2018, Silver nanomaterial-immobilized desalination systems for efficient removal of radioactive iodine species in water, Nanomaterials, 8 (9), 660.

[40] Voisin, H., Bergström, L., Liu, P., and Mathew, A.P., 2017, Nanocellulose-based materials for water purification, Nanomaterials, 7 (3), 57.

[41] Ba-Abbad, M.M., Mohammad, A.W., Takriff, M.S., Rohani, R., Mahmoudi, E., Faneer, K.A., and Benamo, A., 2017, Synthesis of iron oxide nanoparticles to enhance polysulfone ultrafiltration membrane performance for salt rejection, Chem. Eng. Trans., 56, 1699–1704.

[42] Tayefeh, A., Mousavi, S.A., Wiesner, M., and Poursalehi, R., 2015, Synthesis and surface characterization of magnetite-titania nanoparticles/polyamide nanocomposite smart RO membrane, Procedia Mater. Sci., 11, 342–346.

[43] Kadhom, M., Yin, J., and Deng, B., 2016, A thin film nanocomposite membrane with MCM-41 silica nanoparticles for brackish water purification, Membranes, 6 (4), 50.

[44] Tiraferri, A., Kang, Y., Giannelis, E.P., and Elimelech, M., 2012, Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles, ACS Appl. Mater. Interfaces, 4 (9), 5044–5053.

[45] Silva, T.A., Andrade, P.F., Segala, K., Silva, L.S.C., Silva, L.P., Nista, S.V.G., Mei, L.H.I., Duran, N., and Teixeira, M.F.S., 2017, Silver nanoparticles biosynthesis and impregnation in cellulose acetate membrane for anti-yeast therapy, Afr. J. Biotechnol., 16 (27), 1490–1500.

[46] Ding, M., Shi, W., Guo, L., Leong, Z.Y., Baji, A., and Yang, H.Y., 2017, Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination, J. Mater. Chem. A, 5 (13), 6113–6121.

[47] Dube, S.T., Moutloali, R.M., and Malinga, S.P., 2020, Hyperbranched polyethyleneimine/multi-walled carbon nanotubes polyethersulfone membrane incorporated with Fe-Cu bimetallic nanoparticles for water treatment, J. Environ. Chem. Eng., 8 (4), 103962.

[48] Li, B., Chen, X., Li, K., Zhang, C., He, Y., Du, R., Wang, J., and Chen, L., 2019, Coupling membrane and Fe-Pd bimetallic nanoparticles for trichloroethene removing from water, J. Ind. Eng. Chem., 78, 198–209.

[49] Smuleac, V., Varma, R., Sikdar, S., and Bhattacharyya, D., 2011, Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics, J. Membr. Sci., 379 (1-2), 131–137.

[50] Arumugham, T., Ouda, M., Krishnamoorthy, R., Hai, A., Gnanasundaram, N., Hasan, S.W., and Banat, F., 2022, Surface-engineered polyethersulfone membranes with inherent Fe–Mn bimetallic oxides for improved permeability and antifouling capability, Environ. Res., 204 (Part D), 112390.

[51] Sun, M.F., Wang, T., Wu, L.G., and Wang, Y.X., 2021, Enhancing the permeation and antifouling performance of PVDF hybrid membranes by incorporating Co–Fe hydroxide nanoparticles in reverse microemulsion, J. Environ. Chem. Eng., 9 (6), 106556.

[52] Yang, J., Ao, Z., Niu, X., Dong, J., Wang, S., and Wu, H., 2021, Facile one-step synthesis of 3D honeycomb-like porous chitosan bead inlaid with Mn-Fe bimetallic oxide nanoparticles for enhanced degradation of dye pollutant, Int. J. Biol. Macromol., 186, 829–838.

[53] Azadi, F., Karimi-Jashni, A., and Zerafat, M.M., 2021, Desalination of brackish water by gelatin-coated magnetite nanoparticles as a novel draw solute in forward osmosis process, Environ. Technol., 42 (18), 2885–2895.

[54] Tayel, A., Nasr, P., and Sewilam, H., 2019, Forward osmosis desalination using pectin-coated magnetic nanoparticles as a draw solution, Clean Technol. Environ. Policy, 21 (8), 1617–1628.

[55] Moustafa, H., Isawi, H., and Abd El Wahab, S.M., 2022, Utilization of PVA nano-membrane based synthesized magnetic GO-Ni-Fe2O4 nanoparticles for removal of heavy metals from water resources, Environ. Nanotechnol., Monit. Manage., 18, 100696.

[56] Huang, Z., Liu, J., Liu, Y., Xu, Y., Li, R., Hong, H., Shen, L., Lin, H., and Liao, B.Q., 2021, Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process, J. Membr. Sci., 623, 119080.

[57] Ge, Q., Yang, L., Cai, J., Xu, W., Chen, Q., and Liu, M., 2016, Hydroacid magnetic nanoparticles in forward osmosis for seawater desalination and efficient regeneration via integrated magnetic and membrane separations, J. Membr. Sci., 520, 550–559.

[58] Ng, Q.H., Lim, J.K., Ahmad, A.L., Ooi, B.S., and Low, S.C., 2015, Magnetic nanoparticles augmented composite membranes in removal of organic foulant through magnetic actuation, J. Membr. Sci., 493, 134–146.

[59] Daraei, P., Madaeni, S.S., Ghaemi, N., Khadivi, M.A., Astinchap, B., and Moradian, R., 2013, Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: Study of magnetic field induced casting, Sep. Purif. Technol., 109, 111–121.

[60] Huang, X., Zhang, J., Peng, K., Na, Y., Xiong, Y., Liu, W., Liu, J., Lu, L., and Li, S., 2019, Functional magnetic nanoparticles for enhancing ultrafiltration of waste cutting emulsions by significantly increasing flux and reducing membrane fouling, J. Membr. Sci., 573, 73–84.

[61] Zarandona, I., Correia, M.D., Moreira, J., Costa, C.M., Lanceros-Mendez, S., Guerrero, P., and de la Caba, K., 2023, Magnetically responsive chitosan-pectin films incorporating Fe3O4 nanoparticles with enhanced antimicrobial activity, Int. J. Biol. Macromol., 227, 1070–1077.

[62] Arshad, F., Aubry, C., and Zou, L., 2022, Highly permeable MoS2 nanosheet porous membrane for organic matter removal, ACS Omega, 7 (2), 2419–2428.

[63] Chae, H., Kim, I., and Kwon, Y., 2021, Acid-resistance enhancement of thin-film composite membrane using barrier effect of graphene oxide nanosheets, Materials, 14 (12), 3151.

[64] Ahmad, N.A., Goh, P.S., Zulhairun, A.K., and Ismail, A.F., 2020, Antifouling property of oppositely charged titania nanosheet assembled on thin film composite reverse osmosis membrane for highly concentrated oily saline water treatment, Membranes, 10 (9), 237.

[65] Yeamsuksawat, T., Zhao, H., and Liang, J., 2021, Characterization and antimicrobial performance of magnetic Fe3O4@Chitosan@Ag nanoparticles synthesized via suspension technique, Mater. Today Commun., 28, 102481.

[66] Stylianakis, M.M., Viskadouros, G., Polyzoidis, C., Veisakis, G., Kenanakis, G., Kornilios, N., Petridis, K., and Kymakis, E., 2019, Updating the role of reduced graphene oxide ink on field emission devices in synergy with charge transfer materials, Nanomaterials, 9 (2), 137.

[67] Nakagawa, K., Araya, S., Kunimatsu, M., Yoshioka, T., Shintani, T., Kamio, E., and Matsuyama, H., 2018, Fabrication of stacked graphene oxide nanosheet membranes using triethanolamine as a crosslinker and mild reducing agent for water treatment, Membranes, 8 (4), 130.

[68] Homem, N.C., Yamaguchi, N.U., Vieira, M.F., Amorim, M.T.S.P., and Bergamasco, R., 2017, Surface modification of microfiltration membrane with GO nanosheets for dyes removal from aqueous solutions, Chem. Eng. Trans., 60, 259–264.

[69] Kim, S., Wang, H., and Lee, Y.M., 2019, 2D Nanosheets and their composite membranes for water, gas, and ion separation, Angew. Chem., Int. Ed., 58 (49), 17512–17527.

[70] Lin, Z., Hu, C., Liu, Q., and Zhang, Q., 2022, Nanosheet-templated graphene oxide membranes for fast molecule separation, AIChE J., 68 (11), e17818.

[71] Wang, X., Wang, H., Wang, Y., Gao, J., Liu, J., and Zhang, Y., 2019, Hydrotalcite/graphene oxide hybrid nanosheets functionalized nanofiltration membrane for desalination, Desalination, 451, 209–218.

[72] Zhang, Q., Chen, S., Fan, X., Zhang, H., Yu, H., and Quan, X., 2018, A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving, Appl. Catal., B, 224, 204–213.

[73] Lim, S., Park, K.H., Tran, V.H., Akther, N., Phuntsho, S., Choi, J.Y., and Shon, H.K., 2020, Size-controlled graphene oxide for highly permeable and fouling-resistant outer-selective hollow fiber thin-film composite membranes for forward osmosis, J. Membr. Sci., 609, 118171.

[74] Alam, I., Guiney, L.M., Hersam, M.C., and Chowdhury, I., 2020, Pressure-driven water transport behavior and antifouling performance of two-dimensional nanomaterial laminated membranes, J. Membr. Sci., 599, 117812.

[75] Nishimoto, S., Takiguchi, T., Kameshima, Y., and Miyake, M., 2019, Underwater superoleophobicity of Nb2O5 photocatalyst surface, Chem. Phys. Lett., 726, 34–38.

[76] Raza, A., Hassan, J.Z., Mahmood, A., Nabgan, W., and Ikram, M., 2022, Recent advances in membrane-enabled water desalination by 2D frameworks: Graphene and beyond, Desalination, 531, 115684.

[77] Wang, X., Li, Q., Zhang, J., Huang, H., Wu, S., and Yang, Y., 2020, Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination, J. Membr. Sci., 603, 118036.

[78] Dong, H., Wu, L., Zhang, L., Chen, H., and Gao, C., 2015, Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes, J. Membr. Sci., 494, 92–103.

[79] Vetrivel, S., Sri Abirami Saraswathi, M., Rana, D., Divya, K., and Nagendran, A., 2018, Cellulose acetate composite membranes tailored with exfoliated tungsten disulfide nanosheets: Permeation characteristics and antifouling ability, Int. J. Biol. Macromol., 115, 540–546.

[80] Bi, Q., Zhang, C., Liu, J., Cheng, Q., and Xu, S., 2020, A nanofiltration membrane prepared by PDA-C3N4 for removal of divalent ions, Water Sci. Technol., 81 (2), 253–264.

[81] Rahimi, A., and Mahdavi, H., 2019, Zwitterionic-functionalized GO/PVDF nanocomposite membranes with improved anti-fouling properties, J. Water Process Eng., 32, 100960.

[82] Venkatesh, K., Arthanareeswaran, G., Bose, A.C., and Kumar, P.S., 2020, Hydrophilic hierarchical carbon with TiO2 nanofiber membrane for high separation efficiency of dye and oil-water emulsion, Sep. Purif. Technol., 241, 116709.

[83] Ren, L., Ozisik, R., and Kotha, S.P., 2014, Rapid and efficient fabrication of multilevel structured silica micro-/nanofibers by centrifugal jet spinning, J. Colloid Interface Sci., 425, 136–142.

[84] Tijing, L.D., Choi, J.S., Lee, S., Kim, S.H., and Shon, H.K., 2014, Recent progress of membrane distillation using electrospun nanofibrous membrane, J. Membr. Sci., 453, 435–462.

[85] Uppal, R., Bhat, G., Eash, C., and Akato, K., 2013, Melt blown nanofiber media for enhanced quality factor, Fibers Polym., 14 (4), 660–668.

[86] Saleem, H., Trabzon, L., Kilic, A., and Zaidi, S.J., 2020, Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination, Desalination, 478, 114178.

[87] Jashni, E., Hosseini, S.M., Shen, J.N., and Van der Bruggen, B., 2019, Electrochemical characterization of mixed matrix electrodialysis cation exchange membrane incorporated with carbon nanofibers for desalination, Ionics, 25 (11), 5595–5610.

[88] Li, Y., Wong, E., Mai, Z., and Van der Bruggen, B., 2019, Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination, J. Membr. Sci., 592, 117396.

[89] Khayet, M., García-Payo, C., and Matsuura, T., 2019, Superhydrophobic nanofibers electrospun by surface segregating fluorinated amphiphilic additive for membrane distillation, J. Membr. Sci., 588, 117215.

[90] Zhu, Z., Zhong, L., Chen, X., Zheng, W., Zuo, J., Zeng, G., and Wang, W., 2020, Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation, J. Membr. Sci., 615, 118499.

[91] Zhang, R., Huang, K., Zhu, M., Chen, G., Tang, Z., Li, Y., Yu, H., Qiu, B., and Li, X., 2020, Corrosion resistance of stretchable electrospun SEBS/PANi micro-nano fiber membrane, Eur. Polym. J., 123, 109394.

[92] Karatepe, U.Y., and Ozdemir, T., 2020, Improving mechanical and antibacterial properties of PMMA via polyblend electrospinning with silk fibroin and polyethyleneimine towards dental applications, Bioact. Mater., 5 (3), 510–515.

[93] Ren, L.F., Ngo, H.H., Bu, C., Ge, C., Ni, S.Q., Shao, J., and He, Y., 2020, Novel external extractive membrane bioreactor (EMBR) using electrospun polydimethylsiloxane/polymethyl methacrylate membrane for phenol-laden saline wastewater, Chem. Eng. J., 383, 123179.

[94] Ren, L.F., Adeel, M., Li, J., Xu, C., Xu, Z., Zhang, X., Shao, J., and He, Y., 2018, Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane, Water Res., 135, 31–43.

[95] Gupta, S., and Dimakis, N., 2019, Computational predictions of electronic properties of graphene with defects, adsorbed transition metal-oxides and water using density functional theory, Appl. Surf. Sci, 467-468, 760–772.

[96] Arora, B., and Attri, P., 2020, Carbon nanotubes (CNTs): A potential nanomaterial for water purification, J. Compos. Sci., 4 (3), 135.

[97] Trivedi, K., and Alameh, S., 2016, Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes, SpringerPlus, 5 (1), 1158.

[98] Thomas, M., and Corry, B., 2016, A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination, Philos. Trans. R. Soc., A, 374 (2060), 20150020.

[99] Wang, Z., Wang, X., Zheng, T., Mo, B., Xu, H., Huang, Y., Wang, J., Gao, C., and Gao, X., 2022, high flux nanofiltration membranes with double-walled carbon nanotube (DWCNT) as the interlayer, Membranes, 12 (10), 1011.

[100] Yousef, A., Al-Enizi, A.M., Mohamed, A.M., El-Halwany, M.M., Ubaidullah, M., and Brooks, R.M., 2020, Synthesis and characterization of CeO2/rGO nanoflakes as electrode material for capacitive deionization technology, Ceram. Int., 46 (10, Part A), 15034–15043.

[101] Rashid, M.H.O., Pham, S.Q.T., Sweetman, L.J., Alcock, L.J., Wise, A., Nghiem, L.D., Triani, G., Panhuis, M., and Ralph, S.F., 2014, Synthesis, properties, water and solute permeability of MWNT buckypapers, J. Membr. Sci., 456, 175–184.

[102] Tseng, C., and Liu, Y.L., 2022, Creation of water-permeation pathways with matrix-polymer functionalized carbon nanotubes in polymeric membranes for pervaporation desalination, J. Membr. Sci. Lett., 2 (2), 100027.

[103] Jia, L., Zhang, X., Zhang, X., Cong, S., Wang, J., Liu, J., and Zhang, Y., 2019, Polyvinyl alcohol-assisted high-flux thin film nanocomposite membranes incorporated with halloysite nanotubes for nanofiltration, Environ. Sci.: Water Res. Technol., 5 (8), 1412–1422.

[104] Fathizadeh, M., Tien, H.N., Khivantsev, K., Song, Z., Zhou, F., and Yu, M., 2019, Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination, Desalination, 451, 125–132.

[105] Ganganboina, A.B., and Doong, R.A., 2020, Nitrogen doped graphene quantum dot-decorated earth-abundant nanotubes for enhanced capacitive deionization, Environ. Sci.: Nano, 7 (1), 228–237.

[106] Duan, L., Zhao, Q., Liu, J., and Zhang, Y., 2015, Antibacterial behavior of halloysite nanotubes decorated with copper nanoparticles in a novel mixed matrix membrane for water purification, Environ. Sci.: Water Res. Technol., 1 (6), 874–881.

[107] Farahbakhsh, J., Delnavaz, M., and Vatanpour, V., 2019, Simulation and characterization of novel reverse osmosis membrane prepared by blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using artificial neural networks, J. Membr. Sci., 581, 123–138.

[108] Li, K., Lee, B., and Kim, Y., 2019, High performance reverse osmosis membrane with carbon nanotube support layer, J. Membr. Sci., 592, 117358.

[109] Zakariya, S., Yeong, Y.F., Jusoh, N., and Tan, L.S., 2022, Performance of multilayer composite hollow membrane in separation of CO2 from CH4 in mixed gas conditions, Polymers, 14 (7), 1480.

[110] Kang, D.H., Kim, N.K., and Kang, H.W., 2021, Electrostatic charge retention in PVDF nanofiber-nylon mesh multilayer structure for effective fine particulate matter filtration for face masks, Polymers, 13 (19), 3235.

[111] Roslan, J., Mustapa Kamal, S.M., Md. Yunos, K.F., and Abdullah, N., 2021, Fractionation of tilapia by-product protein hydrolysate using multilayer configuration of ultrafiltration membrane, Processes, 9 (3), 446.

[112] Baig, U., Waheed, A., Salih, H.A., Matin, A., Alshami, A., and Aljundi, I.H., 2021, Facile modification of NF membrane by multi-layer deposition of polyelectrolytes for enhanced fouling resistance, Polymers, 13 (21), 3728.

DOI: https://doi.org/10.22146/ijc.84308

Article Metrics

Abstract views : 1810 | views : 817

Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.