Enhancing the CO2 Adsorption Performance of UiO-66 by Imidazolium-Based Room-Temperature Ionic Liquids (RTILs) Incorporation

https://doi.org/10.22146/ijc.84669

Laela Mukaromah(1), Andi Haryanto(2), Yessi Permana(3), Aep Patah(4*)

(1) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(2) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(3) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(4) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


Functionalization of metal-organic frameworks resulting in efficient CO2 adsorption materials became substantial in preventing the worsening environment upon the emission of CO2. In this study, several room-temperature ionic liquids (RTILs) with an imidazolium-based cation of 1-butyl-3-methylimidazolium [bmim]+ and anions of bis(trifluoromethylsulfonyl)imide [TFSI], trifluoromethanesulfonate [OTf], hexafluorophosphate [PF6], and tetrafluoroborate [BF4] were incorporated into UiO-66 by wet impregnation method under air. The RTILs/UiO-66 composites were characterized by PXRD, FTIR, TGA, nitrogen physisorption, and CO2 adsorption. Based on the type of anions of imidazolium-based RTILs, the CO2 uptake of RTILs/UiO-66 composites followed the trend: [OTf] > [TFSI] > [PF₆] > [BF₄] at low temperature (273 K) and pressure (100 kPa). The CO2 uptake of pristine UiO-66 increased approximately 1.5 times upon incorporating [bmim][OTf]. The type of anions of imidazolium-based RTILs influences the CO2 adsorption performance of RTILs/UiO-66 composites in which anions containing fluoroalkyl group ([OTf], [TFSI]) exhibited a higher CO2 uptake compared to inorganic fluorinated anions ([BF4], [PF6]). Hence, the incorporation of hydrophobic imidazolium-based RTILs showed a potential to enhance the performance of UiO-66 for CO2 adsorption application.


Keywords


CO2 adsorption; imidazolium-based RTILs; incorporation; UiO-66

Full Text:

Full Text PDF


References

[1] Sylvia, N., Fitriani, F., Dewi, R., Mulyawan, R., Muslim, A., Husin, H., Yunardi, Y., and Reza, M., 2021, Characterization of bottom ash waste adsorbent from palm oil plant boiler burning process to adsorb carbon dioxide in a fixed bed column, Indones. J. Chem., 21 (6), 1454–1462.

[2] Wardani, A.R.K., and Widiastuti, N., 2016, Synthesis of zeolite-X supported on glasswool for CO2 capture material: Variation of immersion time and NaOH concentration at glasswool activation, Indones. J. Chem., 16 (1), 1–7.

[3] Li, B., Wen, H.M., Yu, Y., Cui, Y., Zhou, W., Chen, B., and Qian, G., 2018, Nanospace within metal-organic frameworks for gas storage and separation, Mater. Today Nano, 2, 21–49.

[4] Chen, Y., Wu, H., Liu, Z., Sun, X., Xia, Q., and Li, Z., 2018, Liquid-assisted mechanochemical synthesis of copper based MOF-505 for the separation of CO2 over CH4 or N2, Ind. Eng. Chem. Res., 57 (2), 703–709.

[5] Belmabkhout, Y., Bhatt, P.M., Adil, K., Pillai, R.S., Cadiau, A., Shkurenko, A., Maurin, G., Gongping, L., Koros, W.J., and Eddaoudi, M., 2018, Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity, Nat. Energy, 3 (12), 1059–1066.

[6] Sun, T., Ren, X., Hu, J., and Wang, S., 2014, Expanding pore size of Al-BDC metal-organic frameworks as a way to achieve high adsorption selectivity for CO2/CH4 separation, J. Phys. Chem. C, 118 (29), 15630–15639.

[7] Gao, W., Zheng, W., Sun, W., and Zhao, L., 2022, Understanding the effective capture of H2S/CO2 from natural gas using ionic liquid@MOF composites, J. Phys. Chem. C, 126 (46), 19872–19882.

[8] Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.H., and Long, J.R., 2012, Carbon dioxide capture in metal-organic frameworks, Chem. Rev., 112 (2), 724–781.

[9] Yoon, H.C., Rallapalli, P.B.S., Beum, H.T., Han, S.S., and Kim, J.N., 2018, Hybrid postsynthetic functionalization of tetraethylenepentamine onto MIL-101(Cr) for separation of CO2 from CH4, Energy Fuels, 32 (2), 1365–1373.

[10] Kitao, T., Zhang, Y., Kitagawa, S., Wang, B., and Uemura, T., 2017, Hybridization of MOFs and polymers, Chem. Soc. Rev., 46 (11), 3108–3133.

[11] Furukawa, S., Reboul, J., Diring, S., Sumida, K., and Kitagawa, S., 2014, Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale, Chem. Soc. Rev., 43 (16), 5700–5734.

[12] Li, H., Wang, K., Sun, Y., Lollar, C.T., Li, J., and Zhou, H.C., 2018, Recent advances in gas storage and separation using metal–organic frameworks, Mater. Today, 21 (2), 108–121.

[13] Zeeshan, M., Nozari, V., Yagci, M.B., Isik, T., Unal, U., Ortalan, V., Keskin, S., and Uzun, A., 2018, Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity, J. Am. Chem. Soc., 140 (32), 10113–10116.

[14] Flaig, R.W., Osborn Popp, T.M., Fracaroli, A.M., Kapustin, E.A., Kalmutzki, M.J., Altamimi, R.M., Fathieh, F., Reimer, J.A., and Yaghi, O.M., 2017, The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions, J. Am. Chem. Soc., 139 (35), 12125–12128.

[15] Marti, A.M., Venna, S.R., Roth, E.A., Culp, J.T., and Hopkinson, D.P., 2018, Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation, ACS Appl. Mater. Interfaces, 10 (29), 24784–24790.

[16] Zhang, S., Zhang, J., Zhang, Y., and Deng, Y., 2017, Nanoconfined ionic liquids, Chem. Rev., 117 (10), 6755–6833.

[17] Zeng, S., Zhang, X., Bai, L., Zhang, X., Wang, H., Wang, J., Bao, D., Li, M., Liu, X., and Zhang, S., 2017, Ionic-liquid-based CO2 capture systems: Structure, interaction and process, Chem. Rev., 117 (14), 9625–9673.

[18] Kinik, F.P., Altintas, C., Balci, V., Koyuturk, B., Uzun, A., and Keskin, S., 2016, [BMIM][PF6] Incorporation doubles CO2 selectivity of ZIF-8: Elucidation of interactions and their consequences on performance, ACS Appl. Mater. Interfaces, 8 (45), 30992–31005.

[19] Oliveira, L.T., Gonçalves, R.V., Gonçalves, D.V., de Azevedo, D.C.S., and de Lucena, S.M.P., 2019, Superior performance of mesoporous MOF MIL-100 (Fe) impregnated with ionic liquids for CO2 adsorption, J. Chem. Eng. Data, 64 (5), 2221–2228.

[20] Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., and Lillerud, K.P., 2008, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130 (42), 13850–13851.

[21] Pirzadeh, K., Esfandiari, K., Ghoreyshi, A.A., and Rahimnejad, M., 2020, CO2 and N2 adsorption and separation using aminated UiO-66 and Cu₃(BTC)2: A comparative study, Korean J. Chem. Eng., 37 (3), 513–524.

[22] Sun, Y., Huang, H., Vardhan, H., Aguila, B., Zhong, C., Perman, J.A., Al-Enizi, A.M., Nafady, A., and Ma, S., 2018, Facile approach to graft ionic liquid into MOF for improving the efficiency of CO2 chemical fixation, ACS Appl. Mater. Interfaces, 10 (32), 27124–27130.

[23] Øien, S., Wragg, D., Reinsch, H., Svelle, S., Bordiga, S., Lamberti, C., and Lillerud, K.P., 2014, Detailed structure analysis of atomic positions and defects in zirconium metal-organic frameworks, Cryst. Growth Des., 14 (11), 5370–5372.

[24] Sezginel, K.B., Keskin, S., and Uzun, A., 2016, Tuning the gas separation performance of CuBTC by ionic liquid incorporation, Langmuir, 32 (4), 1139–1147.

[25] Durak, Ö., Kulak, H., Kavak, S., Polat, H.M., Keskin, S., and Uzun, A., 2020, Towards complete elucidation of structural factors controlling thermal stability of IL/MOF composites: Effects of ligand functionalization on MOFs, J. Phys.: Condens. Matter, 32 (48), 484001.

[26] Kavak, S., Kulak, H., Polat, H.M., Keskin, S., and Uzun, A., 2020, Fast and selective adsorption of methylene blue from water using [BMIM][PF6]-incorporated UiO-66 and NH2-UiO-66, Cryst. Growth Des., 20 (6), 3590–3595.

[27] Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., and Rogers, R.D., 2001, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem., 3 (4), 156–164.

[28] Ferreira, T.J., Ribeiro, R.P.P.L., Mota, J.P.B., Rebelo, L.P.N., Esperança, J.M.S.S., and Esteves, I.A.A.C., 2019, Ionic liquid-impregnated metal-organic frameworks for CO2/CH4 separation, ACS Appl. Nano Mater., 2 (12), 7933–7950.

[29] Arrozi, U.S.F., Wijaya, H.W., Patah, A., and Permana, Y., 2015, Efficient acetalization of benzaldehydes using UiO-66 and UiO-67: Substrates accessibility or Lewis acidity of zirconium, Appl. Catal., A, 506, 77–84.

[30] Kim, H.K., Yun, W.S., Kim, M.B., Kim, J.Y., Bae, Y.S., Lee, J.D., and Jeong, N.C., 2015, A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2, J. Am. Chem. Soc., 137 (31), 10009–10015.

[31] Vicent-Luna, J.M., Gutiérrez-Sevillano, J.J., Anta, J.A., and Calero, S., 2013, Effect of room-temperature ionic liquids on CO2 separation by a Cu-BTC metal-organic framework, J. Phys. Chem. C, 117 (40), 20762–20768.

[32] Xia, X., Hu, G., Li, W., and Li, S., 2019, Understanding reduced CO2 uptake of ionic liquid/metal−organic framework (IL/MOF) composites, ACS Appl. Nano Mater., 2 (9), 6022–6029.

[33] Aki, S.N.V.K., Mellein, B.R., Saurer, E.M., and Brennecke, J.F., 2004, High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids, J. Phys. Chem. B, 108 (52), 20355–20365.

[34] Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K., and Brennecke, J.F., 2007, Improving carbon dioxide solubility in ionic liquids, J. Phys. Chem. B, 111 (30), 9001–9009.

[35] Kazemiabnavi, S., Zhang, Z., Thornton, K., and Banerjee, S., 2016, Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries, J. Phys. Chem. B, 120 (25), 5691–5702.



DOI: https://doi.org/10.22146/ijc.84669

Article Metrics

Abstract views : 940 | views : 419


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.