Optical and Crystal Structure Properties of ZnO Nanoparticle Synthesized through Biosynthesis Method for Photocatalysis Application


Sri Wahyu Suciyati(1*), Posman Manurung(2), Junaidi Junaidi(3), Rudy Situmeang(4)

(1) Doctoral Program of Mathematics and Natural Sciences, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia
(2) Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia
(*) Corresponding Author


In this study, zinc oxide nanoparticles (ZnO NPs) were synthesized from zinc nitrate hexahydrate precursor and mango leaf extract (MLE). The purpose of this research was to investigate the crystal structure and optical properties exhibited by ZnO NPs for photocatalytic applications. ZnO NPs produced from various concentrations of sodium hydroxide (NaOH) and the addition of MLE during the synthesis stage demonstrated intriguing physical structure and optical properties. XRD characterization results revealed the attainment of a pure ZnO phase with a high crystallinity degree in all samples. Biosynthesis with MLE unveiled minor peaks corresponding to the cellulose phase. The achieved crystallite size ranged from 15–28 nm. The FTIR patterns detected in the wavenumber range of 600–4000 cm−1 indicated successful crystallization of all ZnO NPs samples. The band gap energy for each sample (ZnO-A to ZnO-E) is indicated to be in the range of 3.25, 3.25, 3.26, 3.31, and 3.17 eV, as demonstrated by the Tauc relation. The effect of MB degradation by the ZnO-E photocatalyst is revealed by the photodegradation of 96.46%.


ZnO NPs; crystal structure; biosynthesis; functional group; band gap energy

Full Text:

Full Text PDF


[1] Espitia, P.J.P., Soares, N.F.F., Coimbra, J.S.R., de Andrade, N.J., Cruz, R.S., Medeiros, E.A.A., 2012, Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications, Food Bioprocess Technol., 5 (5), 1447–1464.

[2] Lu, P.J., Fang, S.W., Cheng, W.L., Huang, S.C., Huang, M.C., and Cheng, H.F., 2018, Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods, J. Food Drug Anal., 26 (3), 1192–1200.

[3] Amini, M., and Ashrafi, M., 2016, Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles, Nanochem. Res., 1 (1), 79–86.

[4] Siddiqi, K.S., ur Rahman, A., Tajuddin, T., and Husen, A., 2018, Properties of zinc oxide nanoparticles and their activity against microbes, Nanoscale Res. Lett., 13 (1), 141.

[5] Ungureanu, N., Biriş, S.S., Vlăduţ, V., Zăbavă, B., and Popa, M., 2019, TiO2 photocatalyst in wastewater treatment – review, International Symposium ISB-INMATEH – Agricultural and Mechanical Engineering, Bucharest, Romania, 31 October-1 November 2019.

[6] Elfeky, A.S., Youssef, H.F., and Elzaref, A.S., 2020, Adsorption of dye from wastewater onto ZnO nanoparticles-loaded zeolite: Kinetic, thermodynamic and isotherm studies, Z. Phys. Chem., 234 (2), 255–278.

[7] Barnes, R.J., Molina, R., Xu, J., Dobson, P.J., and Thompson, I.P., 2013, Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria, J Nanoparticle Res., 15 (2), 1432.

[8] Ayanda, O.S., Adeleye, B.O., Aremu, O.H., Ojoloba, F.B., Lawal, O.S., Amodu, O.S., Oketayo, O.O., Klink, M.J., and Nelana, S.M., 2023, Photocatalytic degradation of metronidazole using zinc oxide nanoparticles supported on acha waste, Indones. J. Chem., 23 (1), 158–169.

[9] Jiang, W., Mashayekhi, H., and Xing, B., 2009, Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environ. Pollut., 157 (5), 1619–1625.

[10] Qamar, M., and Muneer, M., 2009, A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin, Desalination, 249 (2), 535–540.

[11] Adams, L.K., Lyon, D.Y., and Alvarez, P.J.J., 2006, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Res., 40 (19), 3527–3532.

[12] Jeong, B., Kim, D.H., Park, E.J., Jeong, M.G., Kim, K.D., Seo, H.O., Kim, Y.D., and Uhm, S., 2014, ZnO shell on mesoporous silica by atomic layer deposition: Removal of organic dye in water by an adsorbent and its photocatalytic regeneration, Appl. Surf. Sci., 307, 468–474.

[13] Zhang, W., Meng, L., Mu, G., Zhao, M., Zou, P., and Zhang, Y., 2016, A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead(II) ions, Appl. Surf. Sci., 378, 196–206.

[14] Monsef Khoshhesab, Z., and Souhani, S., 2018, Adsorptive removal of reactive dyes from aqueous solutions using zinc oxide nanoparticles, J. Chin. Chem. Soc., 65 (12), 1482–1490.

[15] Adam, F., Himawan, A., Aswad, M., Ilyas, S., Heryanto, H., Anugrah, M.A., and Tahir, D., 2021, Green synthesis of zinc oxide nanoparticles using Moringa oleifera L. water extract and its photocatalytic evaluation, J. Phys.: Conf. Ser., 1763 (1), 012002.

[16] Rajeshkumar, S., Kumar, S.V., Ramaiah, A., Agarwal, H., Lakshmi, T., and Roopan, S.M., 2018, Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells, Enzyme Microb. Technol., 117, 91–95.

[17] Narayana, A., Pandey, K., Azmi, N., Tejashwini, M., Shrestha, U., and Lokesh, S.V., 2018, Synthesis and characterization of zinc oxide (Zno) nanoparticles using mango (Mangifera indica) leaves, Int. J. Res. Anal. Rev., 5 (3), 17–23.

[18] Kumaresan, N., Ramamurthi, K., Ramesh Babu, R., Sethuraman, K., and Moorthy Babu, S., 2017, Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity, Appl. Surf. Sci., 418, 138–146.

[19] Kumar, S.G., and Rao, K.S.R.K., 2015, Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv., 5 (5), 3306–3351.

[20] Franco, P., Sacco, O., De Marco, I., and Vaiano, V., 2019, Zinc oxide nanoparticles obtained by supercritical antisolvent precipitation for the photocatalytic degradation of crystal violet dye, Catalysts, 9 (4), 346.

[21] Uysal, B., Şen, S., and Top, A., 2020, Photocatalytic and optical properties of zinc oxide structures prepared at different urea concentrations, Rev. Rom. Mater., 50 (4), 463–470.

[22] Wibowo, A., Marsudi, M.A., Amal, M.I., Ananda, M.B., Stephanie, R., Ardy, H., and Diguna, L.J., 2020, ZnO nanostructured materials for emerging solar cell applications, RSC Adv., 10 (70), 42838–42859.

[23] Akhoon, S.A., Rubab, S., and Shah, M.A., 2015, A benign hydrothermal synthesis of nanopencils-like zinc oxide nanoflowers, Int. Nano Lett., 5 (1), 9–13.

[24] Kolodziejczak-Radzimska, A., and Jesionowski, T., 2014, Zinc oxide—From synthesis to application: A review, Materials, 7 (4), 2833–2881.

[25] Satheshkumar, M., Anand, B., Muthuvel, A., Rajarajan, M., Mohana, V., and Sundaramanickam, A., 2020, Enhanced photocatalytic dye degradation and antibacterial activity of biosynthesized ZnO-NPs using curry leaves extract with coconut water, Nanotechnol. Environ. Eng., 5 (3), 29.

[26] Saad Algarni, T., Abduh, N.A.Y., Al Kahtani, A., and Aouissi, A., 2022, Photocatalytic degradation of some dyes under solar light irradiation using ZnO nanoparticles synthesized from Rosmarinus officinalis extract, Green Chem. Lett. Rev., 15 (2), 460–473.

[27] Hussain, A., Oves, M., Alajmi, M.F., Hussain, I., Amir, S., Ahmed, J., Rehman, M.T., El-Seedi, H.R., and Ali, I., 2019, Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: Anticancer and antimicrobial activities, RSC Adv., 9 (27), 15357–15369.

[28] Nagajyothi, P.C., Cha, S.J., Yang, I.J., Sreekanth, T.V.M., Kim, K.J., and Shin, H.M., 2015, Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract, J. Photochem. Photobiol., B, 146, 10–17.

[29] Soto-Robles, C.A., Luque, P.A., Gómez-Gutiérrez, C.M., Nava, O., Vilchis-Nestor, A.R., Lugo-Medina, E., Ranjithkumar, R., and Castro-Beltrán, A., 2019, Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles, Results Phys., 15, 102807.

[30] Alamdari, S., Sasani Ghamsari, M., Lee, C., Han, W., Park, H.H., Tafreshi, M.J., Afarideh, H., and Ara, M.H., 2020, Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus, Appl. Sci., 10 (10), 3620.

[31] Chemingui, H., Missaoui, T., Mzali, J.C., Yildiz, T., Konyar, M., Smiri, M., Saidi, N., Hafiane, A., and Yatmaz, H.C., 2019, Facile green synthesis of zinc oxide nanoparticles (ZnO NPs): Antibacterial and photocatalytic activities, Mater. Res. Express, 6 (10), 1050b4.

[32] Sierra, M.J., Herrera, A.P., and Ojeda, K.A., 2018, Synthesis of zinc oxide nanoparticles from mango and soursop leaf extracts, Contemp. Eng. Sci., 11 (8), 395–403.

[33] Rajeshkumar, S., Parameswari, R.P., Sandhiya, D., Al-Ghanim, K.A., Nicoletti, M., and Govindarajan, M., 2023, Green synthesis, characterization and bioactivity of Mangifera indica seed-wrapped zinc oxide nanoparticles, Molecules, 28 (6), 2818.

[34] Kumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M., Maheshwari, C., Prajapati, U., Singh, S., Prajapat, R.K., Dhumal, S., Punia, S., Amarowicz, R., and Mekhemar, M., 2021, Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities, Antioxidants, 10 (2), 299.

[35] Wijesinghe, U., Thiripuranathar, G., Menaa, F., Iqbal, H., Razzaq, A., and Almukhlifi, H., 2021, Green synthesis, structural characterization and photocatalytic applications of ZnO nanoconjugates using Heliotropium indicum, Catalysts, 11 (7), 0831.

[36] El-Hossary, F.M., Abd El-Rahman, A.M., Abdelhamidshahat, M., and Ebnalwaled, A.A., 2018, Low hydrothermal temperature synthesis and characterization of ZnO nanoparticles, Int. J. Latest Res. Eng. Technol., 4 (4), 45–51.

[37] Batterjee, M.G., Nabi, A., Kamli, M.R., Alzahrani, K.A., Danish, E.Y., and Malik, M.A., 2022, Green hydrothermal synthesis of zinc oxide nanoparticles for UV-light-induced photocatalytic degradation of ciprofloxacin antibiotic in an aqueous environment, Catalysts, 12 (11), 1347.

[38] Tanwar, S., and Mathur, D., 2021, Hydrothermal synthesis and characterization of zinc oxide nanoplates, Mater. Today: Proc., 47, 4647–4651.

[39] Moharram, A.H., Mansour, S.A., Hussein, M.A., and Rashad, M., 2014, Direct precipitation and characterization of ZnO nanoparticles, J. Nanomater., 2014, 716210.

[40] Mote, V.D., Purushotham, Y., and Dole, B.N., 2012, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. Appl. Phys., 6 (1), 6.

[41] Agus Sumiarna, G.P., Irmansyah, I., and Maddu, A., 2016, Dye-sensitized solar cell based on flower-like ZnO nanoparticles as photoanode and natural dye as photosensitizer, J. Nano- Electron. Phys., 8 (2), 02012.

[42] Sawada, H., Wang, R., and Sleight, A.W., 1996, An electron density residual study of zinc oxide, J. Solid State Chem., 122 (1), 148–150.

[43] Koutu, V., Shastri, L., and Malik, M.M., 2016, Effect of NaOH concentration on optical properties of zinc oxide nanoparticles, Mater. Sci.-Pol., 34 (4), 819–827.

[44] Amin, G., Asif, M.H., Zainelabdin, A., Zaman, S., Nur, O., and Willander, M., 2011, Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method, J. Nanomater., 2011, 269692.

[45] Abdulrahman, A.F., Ahmed, S.M., Hamad, S.M., Almessiere, M.A., Ahmed, N.M., and Sajadi, S.M., 2021, Effect of different pH values on growth solutions for the ZnO nanostructures, Chin. J. Phys., 71, 175–189.

[46] Nath, M.R., Ahmed, A.N., Gafur, M.A., Miah, M.Y., and Bhattacharjee, S., 2018, ZnO nanoparticles preparation from spent zinc–carbon dry cell batteries: Studies on structural, morphological and optical properties, J. Asian Ceram. Soc., 6 (3), 262–270.

[47] Lu, C.H., and Yeh, C.H., 2000, Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int., 26 (4), 351–357.

[48] Mohammadi, F.M., Ghasemi, N., 2018, Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract, J. Nanostruct. Chem., 8 (1), 93–102.

[49] Duraimurugan, J., Kumar, G.S., Maadeswaran, P., Shanavas, S., Anbarasan, P.M., and Vasudevan, V., 2019, Structural, optical and photocatlytic properties of zinc oxide nanoparticles obtained by simple plant extract mediated synthesis, J. Mater. Sci.: Mater. Electron., 30 (2), 1927–1935.

[50] Khorsand Zak, A., Razali, R., Abd Majid, W.H.B., and Darroudi, M., 2011, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles, Int. J. Nanomed., 6, 1399–1403.

[51] Cullity, B.D., and Stock, S.R., 2014, Elements of X-Ray Diffraction, 3rd Ed., Pearson India Education Services, India.

[52] Bindu, P., and Thomas, S., 2014, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys., 8 (4), 123–134.

[53] Xu, S., and Wang, Z.L., 2011, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Res., 4 (11), 1013–1098.

[54] Jay Chithra, M., Sathya, M., and Pushpanathan, K., 2015, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method, Acta Metall. Sin. (Engl. Lett.), 28 (3), 394–404.

[55] Hasan, M., Ullah, I., Zulfiqar, H., Naeem, K., Iqbal, A., Gul, H., Ashfaq, M., and Mahmood, N., 2018, Biological entities as chemical reactors for synthesis of nanomaterials: Progress, challenges and future perspective, Mater. Today Chem., 8, 13–28.

[56] Agarwal, S., Jangir, L.K., Rathore, K.S., Kumar, M., and Awasthi, K., 2019, Morphology-dependent structural and optical properties of ZnO nanostructures, Appl. Phys. A: Mater. Sci. Process., 125 (8), 553.

[57] Ribut, S.H., Che Abdullah, C.A., Mustafa, M., Mohd Yusoff, M.Z., and Ahmad Azman, S.N., 2019, Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity, Mater. Res. Express, 6 (2), 025016.

[58] Swaroop, K., and Somashekarappa, H.M., 2015, Effect of pH values on surface morphology and particle size variation in ZnO nanoparticles synthesised by co-precipitation method, Res. J. Recent Sci., 4 (ISC-2014), 197–201.

[59] Shi, R., Yang, P., Wang, J., Zhang, A., Zhu, Y., Cao, Y., and Ma, Q., 2012, Growth of flower-like ZnO via surfactant-free hydrothermal synthesis on ITO substrate at low temperature, CrystEngComm, 14 (18), 5996–6003.

[60] Sounart, T.L., Liu, J., Voigt, J.A., Huo, M., Spoerke, E.D., and McKenzie, B., 2007, Secondary nucleation and growth of ZnO, J. Am. Chem. Soc., 129 (51), 15786–15793.

[61] Malik, P., Shankar, R., Malik, V., Sharma, N., and Mukherjee, T.K., 2014, Green chemistry based benign routes for nanoparticle synthesis, J. Nanopart., 2014, 302429.

[62] Kalimuthu, V., and Rath, S., 2015, UV photoluminescence from nanocrystalline tin oxide synthesized by a one-step hydrothermal method, Mater. Lett., 157, 11–14.

[63] Gusatti, M., Campos, C.E.M., Souza, D.A.R., Moser, V.M., Kuhnen, N.C., and Riella, H.G., 2013, Effect of reaction parameters on the formation and properties of ZnO nanocrystals synthesized via a rapid solochemical processing, J. Nanosci. Nanotechnol., 13 (12), 8307–8314.

[64] Aneesh, P.M., Vanaja, K.A., and Jayaraj, M.K., 2007, Synthesis of ZnO nanoparticles by hydrothermal method, Proc. SPIE, 6639, 66390J1.

[65] Taghizadeh, S.M., Lal, N., Ebrahiminezhad, A., Moeini, F., Seifan, M., Ghasemi, Y., and Berenjian, A., 2020, Green and economic fabrication of zinc oxide (ZnO) nanorods as a broadband UV blocker and antimicrobial agent, Nanomaterials, 10 (3), 530.

[66] Kaningini, A.G., Azizi, S., Sintwa, N., Mokalane, K., Mohale, K.C., Mudau, F.N., and Maaza, M., 2022, Effect of optimized precursor concentration, temperature, and doping on optical properties of ZnO nanoparticles synthesized via a green route using bush tea (Athrixia phylicoides DC.) leaf extracts, ACS Omega, 7 (36), 31658–31666.

[67] Hassan, M.M., Khan, W., Azam, A., and Naqvi, A.H., 2014, Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions, J. Lumin., 145, 160–166.

[68] Gan, F., Wu, K., Ma, F., and Du, C., 2020, In Situ Determination of nitrate in water using Fourier transform mid-infrared attenuated total reflectance spectroscopy coupled with deconvolution algorithm, Molecules, 25 (24), 5838.

[69] Samanta, P.K., and Bandyopadhyay, A.K., 2012, Chemical growth of hexagonal zinc oxide nanorods and their optical properties, Appl. Nanosci., 2 (2), 111–117.

[70] Meddouri, M., Hammiche, L., Djouadi, D., Chelouche, A., Touam, T., and Boudine, B., 2016, Synthesis of ZnO aerogels nanopowders in supercritical methanol: effect of sol concentration on structural, morphological and optical properties, J. Sol-Gel Sci. Technol., 80 (3), 642–650.

[71] Bundit, O., and Wongsaprom, K., 2018, Shape control in zinc oxide nanostructures by precipitation method, J. Phys.: Conf. Ser., 1144 (1), 012044.

[72] Costa, S.M., Ferreira, D.P., Ferreira, A., Vaz, F., and Fangueiro, R., 2018, Multifunctional flax fibres based on the combined effect of silver and zinc oxide (Ag/ZnO) nanostructures, Nanomaterials, 8 (12), 1069.

[73] Nava, O.J., Soto-Robles, C.A., Gómez-Gutiérrez, C.M., Vilchis-Nestor, A.R., Castro-Beltrán, A., Olivas, A., and Luque, P.A., 2017, Fruit peel extract mediated green synthesis of zinc oxide nanoparticles, J. Mol. Struct., 1147, 1–6.

[74] Gu, Y., Kuskovsky, I.L., Yin, M., O'Brien, S., and Neumark, G.F., 2004, Quantum confinement in ZnO nanorods, Appl. Phys. Lett., 85 (17), 3833–3835.

[75] Köseoǧlu, Y., 2014, A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets, Ceram. Int., 40 (3), 4673–4679.

[76] Basnet, P., Inakhunbi, C.T., Samanta, D., and Chatterjee, S., 2018, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents, J. Photochem. Photobiol., B, 183, 201–221.

[77] Aiempanakit, M., Sudjai, P., Singsumphan, K., Laksee, S., and Suwanchawalit, C., 2022, Brazilein modified zinc oxide nanorods with enhanced visible light-responsive photocatalytic efficiency, J. Met., Mater. Miner., 32 (2), 70–76.

[78] Fatimah, I., Purwiandono, G., Citradewi, P.W., Sagadevan, S., Oh, W.C., and Doong, R., 2021, Influencing factors in the synthesis of photoactive nanocomposites of ZnO/SiO2-porous heterostructures from montmorillonite and the study for methyl violet photodegradation, Nanomaterials, 11 (12), 3427.

DOI: https://doi.org/10.22146/ijc.84796

Article Metrics

Abstract views : 93 | views : 36

Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.