Characterization and Application of Natural Photosensitizer and Poly(vinylidene Fluoride) Nanofiber Membranes-Based Electrolytes in DSSC

https://doi.org/10.22146/ijc.86386

Nafisatus Zakiyah(1), Nita Kusumawati(2*), Pirim Setiarso(3), Supari Muslim(4), Qurrota A'yun(5), Marinda Mayliansarisyah Putri(6)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(4) Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(*) Corresponding Author

Abstract


This comprehensive research has explored the potential of enhancing dye-sensitized solar cells (DSSC) by harnessing environmentally friendly natural dyes, such as chlorophyll pigments from pandanus (664.1 nm) and papaya leaves (664.0 nm), as well as betacyanin pigments from sappan-mangosteen (536.2 nm). Electrochemical analyses elucidated the energy band gaps, revealing a hierarchy with the smallest band gap observed for papaya leaves (1.387 eV), followed closely by sappan-mangosteen (1.389 eV) and pandan leaves (1.396 eV). This research effectively addressed the persistent issue of electrolyte leakage in DSSC development by introducing a polymer electrolyte derived from polyvinylidene fluoride (PVDF) through electrospinning and phase inversion techniques. SEM characterization results and thermogravimetric analysis underscored the superior characteristics and high thermal stability of the PVDF nanofiber polymer for DSSC applications. The study's pivotal findings underscore the remarkable DSSC performance achieved with chlorophyll pigment from papaya leaves, reaching 1.31% efficiency without a polymer electrolyte. Moreover, the sappan-mangosteen dye emerged as a promising contender with the highest efficiency values when applied with polymer electrolyte, recording rates of 1.17% for PVDF NF and 0.95% for PVDF, which are notably comparable to the efficiency of liquid electrolyte at 1.26%.


Keywords


DSSC; photosensitizer; natural dyes; polymer electrolyte

Full Text:

Full Text PDF


References

[1] Omar, A., Ali, M.S., and Abd Rahim, N., 2020, Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review, Sol. Energy, 207, 1088–1121.

[2] Yeoh, M.E., Chan, K.Y., Wong, H.Y., Low, P.L., How Thien, G.S., Ng, Z.N., Ananda Murthy, H.C., and Balachandran, R., 2023, Hydrothermal duration effect on the self-assembled TiO2 photo-anode for DSSC application, Opt. Mater., 141, 113907.

[3] Estiningtyas, I.W., Kusumawati, N., Setiarso, P., Muslim, S., Rahayu, N.T., Safitri, R.N., Zakiyah, N., and Fachrirakarsie, F.F., 2023, Effect of natural dye combination and pH extraction on the performance of dye-sensitized photovoltaics solar cell, Int. J. Renewable Energy Dev., 12 (6), 1054–1060.

[4] Chumwangwapee, N., Suksri, A., and Wongwuttanasatian, T., 2023, Investigation of bi-colour natural dyes potential for dye sensitized solar cell, Energy Rep., 9, 415–421.

[5] Diantoro, M., Maftuha, D., Suprayogi, T., Reynaldi Iqbal, M., Solehudin, S., Mufti, N., Taufiq, A., Hidayat, A., Suryana, R., and Hidayat, R., 2019, Performance of Pterocarpus indicus Willd leaf extract as natural dye TiO2-dye/ITO DSSC, Mater. Today: Proc. 17, 1268–1276.

[6] Abdalhadi, S.M., Al-Baitai, A.Y., and Al-Zubaidi, H.A., 2021, Synthesis and characterization of 2,3-diaminomaleonitrile derivatives by one-pot Schiff base reaction and their application in dye synthesized solar cells, Indones. J. Chem., 21 (2), 443–451.

[7] Kusumawati, N., Setiarso, P., and Muslim, S., 2018, Polysulfone/polyvinylidene fluoride composite membrane: Effect of coating dope composition on membrane characteristics and performance, Rasayan J. Chem., 11 (3), 1034–1041.

[8] Önen, T., Karakuş, M.Ö., Coşkun, R., and Çetin, H., 2019, Reaching stability at DSSCs with new type gel electrolytes, J. Photochem. Photobiol., A, 385, 112082.

[9] Tan, C.Y., Farhana, N.K., Saidi, N.M., Ramesh, S., and Ramesh, K., 2018, Conductivity, dielectric studies and structural properties of P(VA-co-PE) and its application in dye sensitized solar cell, Org. Electron., 56, 116–124.

[10] Bandara, T.M.W.J., Weerasinghe, A.M.J.S., Dissanayake, M.A.K.L., Senadeera, G.K.R., Furlani, M., Albinsson, I., and Mellander, B.E., 2018, Characterization of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell, Electrochim. Acta, 266, 276–283.

[11] Semalti, P., and Sharma, S.N., 2019, Dye sensitized solar cells (DSSCs) electrolytes and natural photo-sensitizers: A review, J. Nanosci. Nanotechnol., 20 (6), 3647–3658.

[12] Sundaramoorhy, K., Muthu, S.P., and Perumalsamy, R., 2018, Enhanced performance of 4,4′-bipyridine-doped PVdF/KI/I2 based solid state polymer electrolyte for dye-sensitized solar cell applications, J. Mater. Sci.: Mater. Electron., 29 (21), 18074–18081.

[13] Bharati, D.C., Kumar, H., and Saroj, A.L., 2019, Chitosan-PEG-NaI based bio-polymer electrolytes: Structural, thermal and ion dynamics studies, Mater. Res. Express, 6 (12), 125360.

[14] Abisharani, J.M., DineshKumar, R., Devikala, S., Arthanareeswari, M., and Ganesan, S., 2020, Influence of 2,4-diamino-6-phenyl-1-3-5-triazine on bio synthesized TiO2 dye-sensitized solar cell fabricated using poly(ethylene glycol) polymer electrolyte, Mater. Res. Express, 7 (2), 025507.

[15] Sahito, I.A., Ahmed, F., Khatri, Z., Sun, K.C., and Jeong, S.H., 2017, Enhanced ionic mobility and increased efficiency of dye-sensitized solar cell by adding lithium chloride in poly(vinylidene fluoride) nanofiber as electrolyte medium, J. Mater. Sci., 52 (24), 13920–13929.

[16] Kusumawati, N., Setiarso, P., Santoso, A.B., Muslim, S., A’yun, Q., and Putri, M.M., 2023, Characterization of poly(vinylidene fluoride) nanofiber-based electrolyte and its application to dye-sensitized solar cell with natural dyes, Indones. J. Chem., 23 (1), 113–126.

[17] Wu, X., Wu, Y., Chen, L., Yan, L., Zhou, S., Zhang, Q., Li, C., Yan, Y., and Li, H., 2018, Bioinspired synthesis of pDA@GO-based molecularly imprinted nanocomposite membranes assembled with dendrites-like Ag microspheres for high-selective adsorption and separation of ibuprofen, J. Membr. Sci., 553, 151–162.

[18] Guo, F., Zhang, C., Wang, Q., Hu, W., Cao, J., Yao, J., Jiang, L., and Wu, Z., 2019, Modification of poly(vinylidene fluoride) membranes with aluminum oxide nanowires and graphene oxide nanosheets for oil-water separation, J. Appl. Polym. Sci., 136 (20), 47493.

[19] Khumalo, N., Nthunya, L., Derese, S., Motsa, M., Verliefde, A., Kuvarega, A., Mamba, B.B., Mhlanga, S., and Dlamini, D.S., 2019, Water recovery from hydrolysed human urine samples via direct contact membrane distillation using PVDF/PTFE membrane, Sep. Purif. Technol., 211, 610–617.

[20] Nthunya, L.N., Gutierrez, L., Lapeire, L., Verbeken, K., Zaouri, N., Nxumalo, E.N., Mamba, B.B., Verliefde, A.R., and Mhlanga, S.D., 2019, Fouling-resistant PVDF nanofibre membranes for the desalination of brackish water in membrane distillation, Sep. Purif. Technol., 228, 115793.

[21] Deng, W., Zhao, H., Pan, F., Feng, X., Jung, B., Abdel-Wahab, A., Batchelor, B., and Li, Y., 2018, Response to comment on “Visible-light-driven photocatalytic degradation of organic water pollutants promoted by sulfite addition”, Environ. Sci. Technol., 52 (3), 1677–1678.

[22] Deng, W., and Li, Y., 2021, Novel superhydrophilic antifouling PVDF-BiOCl nanocomposite membranes fabricated via a modified blending-phase inversion method, Sep. Purif. Technol., 254, 117656.

[23] Ahmad, N.A., Goh, P.S., Yogarathinam, L.T., Zulhairun, A.K., and Ismail, A.F., 2020, Current advances in membrane technologies for produced water desalination, Desalination, 493, 114643.

[24] Kusumawati, N., Setiarso, P., Sianita, M.M., and Muslim, S., 2018, Transport properties, mechanical behavior, thermal and chemical resistance of asymmetric flat sheet membrane prepared from PSf/PVDF blended membrane on gauze supporting layer, Indones. J. Chem., 18 (2), 257–264.

[25] Kusumawati, N., Setiarso, P., Muslim, S., and Purwidiani, N., 2018, Synergistic ability of PSf and PVDF to develop high-performance PSf/PVDF coated membrane for water treatment, Rasayan J. Chem., 11 (1), 260–279.

[26] Li, Y., Xu, M., Xia, Y., Wu, J., Sun, X., Wang, S., Hu, G., and Xiong, C., 2020, Multilayer assembly of electrospun/electrosprayed PVDF-based nanofibers and beads with enhanced piezoelectricity and high sensitivity, Chem. Eng. J., 388, 124205.

[27] Liu, G., Tsen, W.C., Jang, S.C., Hu, F., Zhong, F., Zhang, B., Wang, J., Liu, H., Wang, G., Wen, S., and Gong, C., 2020, Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells, J. Membr. Sci., 611, 118242.

[28] Liu, L., Xu, T., Gui, X., Gao, S., Sun, L., Lin, Q., Song, X., Wang, Z., and Xu, K., 2021, Electrospun silsequioxane-grafted PVDF hybrid membranes for high-performance rechargeable lithium batteries, Composites, Part B, 215, 108849.

[29] Moshfeghian, M., Azimi, H., Mahkam, M., Kalaee, M.R., Mazinani, S., and Mosafer, H., 2021, Effect of solution properties on electrospinning of polymer nanofibers: A study on fabrication of PVDF nanofibers by electrospinning in DMAC and (DMAC/acetone) solvents, Adv. Appl. NanoBio-Technol., 2 (2), 53–58.

[30] Wang, H., Zhang, J., Ning, X., Tian, M., Long, Y., and Ramakrishna, S., 2021, Recent advances in designing and tailoring nanofiber composite electrolyte membranes for high-performance proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 46 (49), 25225–25251.

[31] Han, Y., Shi, C., Cui, F., Chen, Q., Tao, Y., and Li, Y., 2020, Solution properties and electrospinning of polyacrylamide and ε-polylysine complexes, Polymer, 204, 122806.

[32] Hoseini, F.S., Taherian, R., and Atashi, A., 2021, Manufacturing and properties of polyvinyl alcohol/fibrin nanocomposite used for wound dressing, Adv. Appl. NanoBio-Technol., 2 (1), 6–12.

[33] Ezike, S.C., Hyelnasinyi, C.N., Salawu, M.A., Wansah, J.F., Ossai, A.N., and Agu, N.N., 2021, Synergestic effect of chlorophyll and anthocyanin co-sensitizers in TiO2-based dye-sensitized solar cells, Surf. Interfaces, 22, 100882.

[34] Ganta, D., Jara, J., and Villanueva, R., 2017, Dye-sensitized solar cells using aloe vera and cladode of cactus extracts as natural sensitizers, Chem. Phys. Lett., 679, 97–101.

[35] García-Salinas, M.J., and Ariza, M.J., 2019, Optimizing a simple natural dye production method for dye-sensitized solar cells: Examples for betalain (Bougainvillea and beetroot extracts) and anthocyanin dyes, Appl. Sci., 9 (12), 2515.

[36] Purushothamreddy, N., Dileep, R.K., Veerappan, G., Kovendhan, M., and Joseph, D.P., 2020, Prickly pear fruit extract as photosensitizer for dye-sensitized solar cell, Spectrochim. Acta, Part A, 228, 117686.

[37] Güzel, E., Arslan, B.S., Durmaz, V., Cesur, M., Tutar, Ö.F., Sarı, T., İşleyen, M., Nebioğlu, M., and Şişman, İ., 2018, Photovoltaic performance and photostability of anthocyanins, isoquinoline alkaloids and betalains as natural sensitizers for DSSCs, Sol. Energy, 173, 34–41.

[38] Vasanthi, D.S., Ravichandran, K., Kavitha, P., Sriram, S., and Praseetha, P.K., 2020, Combined effect of Cu and N on bandgap modification of ZnO film towards effective visible light responsive photocatalytic dye degradation, Superlattices Microstruct., 145, 106637.

[39] Setiarso, P., Harsono, R.V., and Kusumawati, N., 2023, Fabrication of dye sensitized solar cell (DSSC) using combination of dyes extracted from curcuma (Curcuma xanthorrhiza) rhizome and binahong (Anredera cordifolia) leaf with treatment in pH of the extraction, Indones. J. Chem., 23 (4), 924–936.

[40] Sinha, D., De, D., and Ayaz, A., 2018, Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC, Spectrochim. Acta, Part A, 193, 467–474.

[41] Çakar, S., Atacan, K., and Güy, N., 2019, Synthesis and characterizations of TiO2/Ag photoanodes for used indigo carmine sensitizer based solar cells, Celal Bayar Univ. J. Sci., 15 (1), 23–28.

[42] Khatun, N., Tiwari, S., Amin, R., Tseng, C.M., Biring, S., and Sen, S., 2020, Stable anatase phase with a bandgap in visible light region by a charge compensated Ga–V (1:1) co-doping in TiO2, Ceram. Int., 46 (7), 8958–8970.

[43] Lerrick, R.I., Bere, W., Braga, M.D.S., Supriyanto, A., and Essa, A.H., 2023, T-grafting BODIPY-based photosensitizers: The synthesis of 2,6-diethylacrylic-8-(o-methoxyphenyl)BODIPY and Its DSSC performance, Indones. J. Chem., 23 (1), 232–241.

[44] Kathiravan, A., Khamrang, T., Velusamy, M., and Jaccob, M., 2021, Synthesis, density functional theory and sensitization of indole dyes, Mater. Lett., 283, 128745.

[45] Cheng, P., and Yang, Y., 2020, Narrowing the band gap: The key to high-performance organic photovoltaics, Acc. Chem. Res., 53 (6), 1218–1228.

[46] Tawary, M., Pontoh, J., and Momuat, L., 2019, Analsis kandungan klorofil pada beberapa jenis tanaman palma, Jurnal Bios Logos, 9 (2), 76–82.

[47] Prasad, G., Liang, J.W., Zhao, W., Yao, Y., Tao, T., Liang, B., and Lu, S.G., 2021, Enhancement of solvent uptake in porous PVDF nanofibers derived by a water-mediated electrospinning technique, J. Materiomics, 7 (2), 244–253.

[48] Elmorsy, M.R., Abdel-Latif, E., Badawy, S.A., and Fadda, A.A., 2020, Molecular geometry, synthesis and photovoltaic performance studies over 2-cyanoacetanilides as sensitizers and effective co-sensitizers for DSSCs loaded with HD-2, J. Photochem. Photobiol., A, 389, 112239.

[49] Adhitya, A., Rahmalia, W., Syahbanu, I., Gusrizal, G., and Adhitiyawarman, A., 2023, Deep eutectic solvent (DES) based on choline chloride and mono-, di-, poly-ethylene glycol as KI/I2 electrolyte solvents on DSSC devices, Indones. J. Chem., 23 (5), 1294–1303.

[50] Selvanathan, V., Yahya, R., Alharbi, H.F., Alharthi, N.H., Alharthi, Y.S., Ruslan, M.H., Amin, N., and Akhtaruzzaman, M., 2020, Organosoluble starch derivative as quasi-solid electrolytes in DSSC: Unravelling the synergy between electrolyte rheology and photovoltaic properties, Sol. Energy, 197, 144–153.

[51] Rao, B.N., Suvarna, R.P., and Raghavender, M., 2021, Synthesis of gel polymer electrolyte with PEO/RbI/I2 for DSSC applications, Mater. Today: Proc., 46, 4349–4355.

[52] Tractz, G., Viomar, A., Dias, B.V., de Lima, C.A., Banczek, E., da Cunha, M.T., Antunes, S.R.M., and Rodrigues, P.R.P., 2018, Recombination study of dye sensitized solar cells with natural extracts, J. Braz. Chem. Soc., 30 (2), 371–378.

[53] Narender, B., Naveena, N.L., Pravalika, P., Kaleem, S., Vamshi, M.K., and Mandhadi, J.R., 2017, Pharmacological evaluation of root and leaf extracts of Dracaena reflexa var. angustifolia, Innov Pharm Pharmacother, 5 (3), 141–146.

[54] Lusiana, R.A., Indra, A., Prasetya, N.B.A., Sasongko, N.A., Siahaan, P., Azmiyawati, C., Wijayanti, N., Wijaya, A.R., and Othman, M.H.D., 2021, The effect of temperature, sulfonation, and PEG addition on physicochemical characteristics of PVDF membranes and its application on hemodialysis membrane, Indones. J. Chem., 21 (4), 942–953.

[55] Saha, S., Yauvana, V., Chakraborty, S., and Sanyal, D., 2019, Synthesis and characterization of polyvinylidene-fluoride (PVDF) nanofiber for application as piezoelectric force sensor, Mater. Today: Proc., 18, 1450–1458.

[56] Sharma, K., Sharma, V., and Sharma, S.S., 2018, Dye-sensitized solar cells: Fundamentals and current status, Nanoscale Res. Lett., 13 (1), 381.



DOI: https://doi.org/10.22146/ijc.86386

Article Metrics

Abstract views : 2117 | views : 1395


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.