Phenolic Compounds from Moroccan Retama monosperma L. Boiss, Berberis vulgaris L. and Ricinus communis L.: Characterization, Antioxidant Activity and Performance Criteria of the Validated Method Using UHPLC/DAD/ESI-MS
Meriem Outaki(1*), Manal Zefzoufi(2), Amal Sammama(3), Khadija El Gadali(4), Rabiaa Fdil(5), Layla El Gaini(6)
(1) Laboratory of Applied Chemistry and Environment, Faculty of Sciences and Technologies, University Hassan I, PC. 577, Settat, Morocco
(2) Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, PC. 20, El Jadida, Morocco
(3) Center of Analysis and Characterization, University Cadi Ayyad, PC. 511, Marrakech, Morocco
(4) Laboratory of Sustainable Development and Health Research, Faculty of Sciences and Technologies, University Cadi Ayyad, PC. 549, Marrakech, Morocco
(5) Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, PC. 20, El Jadida, Morocco
(6) Center of Analysis and Characterization, University Cadi Ayyad, PC. 511, Marrakech, Morocco; Laboratory of Applied Chemistry and Biomass, Department of Chemistry, Faculty of Sciences Semlalia, University Cadi Ayyad, PC. 2390, Marrakech, Morocco
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Nasim, N., Sandeep, I.S., and Mohanty, S., 2022, Plant-derived natural products for drug discovery: current approaches and prospects, Nucleus, 65 (3), 399–411.
[2] Dastan, S.D., 2023, Chemical and functional composition and biological activities of Anatolian Hypericum scabrum L. plant, J. Mol. Struct., 1275, 134561.
[3] Oglah, M.K., Mustafa, Y.F., Bashir, M.K., and Jasim, M.H., 2020, Curcumin and its derivatives: A review of their biological activities, Syst. Rev. Pharm., 11 (3), 472–481.
[4] Ismael, R.N., Mustafa, Y.F., and Al-Qazaz, H.K., 2022, Cancer-curative potential of novel coumarins from watermelon princess: A scenario of their isolation and activity, Eurasian Chem. Commun., 4, 657–672.
[5] Loukhmas, S., Kerak, E., Outaki, M., Belaqziz, M., and Harrak, H., 2020, Assessment of minerals, bioactive compounds, and antioxidant activity of ten Moroccan pomegranate cultivars, J. Food Qual., 2020, 8844538.
[6] Loukhmas, S., Outaki, M., Ettalibi, F., Kharbouch, H.A., Kerak, E., and Harrak, H., 2021, Physicochemical criteria, bioactive compounds, antioxidant activity and sensory attributes of ten Moroccan pomegranate cultivars, Eur. J. Hortic. Sci., 86 (4), 339–353.
[7] Rachmayanti, Y., Firmansyah, D., Umma, R.R., Hertanto, D.M., Sudiana, I.K., Santoso, D., Nandika, D., Karlinasari, L., Arinana, A., Batubara, I., and Witasari, L.D., 2022, Antioxidant activity of fungus comb extracts isolated from Indo-Malayan termite Macrotermes gilvus Hagen (Isoptera: Termitidae), Indones. J. Chem., 22 (6), 1693–1704.
[8] Efdi, M., Pratama, D., Itam, A., and Okselni, T., 2022, Antioxidant flavonoid glycoside from leaves of cacao mistletoe (Scurrula ferruginea (Jack) Danser), Indones. J. Chem., 22 (4), 944–952.
[9] Benmekhbi, L., Mosbah, S., Laamraoui, H., Hamlaoui, I., Bencheriet, S., and Ibrahim, D., 2022, Evaluation of phytochemical properties and biological activities of leaf extracts and oil of Petroselinum sativum collected from Algeria, Indones. J. Chem., 22 (6), 1566–1573.
[10] Chandrasekara, A., and Josheph Kumar, T., 2016, Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits, Int. J. Food Sci., 2016, 3631647.
[11] Jo, B.G., Bong, S.K., Jegal, J., Kim, S.N., and Yang, M.H., 2020, Antiallergic effects of phenolic compounds isolated from Stellera chamaejasme on RBL-2H3 cells, Nat. Prod. Commun., 15 (7), 1934578X20942352.
[12] Mustafa, Y.F., 2023, Harmful free radicals in aging: A narrative review of their detrimental effects on health, Ind. J. Clin. Biochem., s12291-023-01147-y.
[13] Luo, K.W., Ko, C.H., Yue, G.G.L., Lee, J.K.M., Li, K.K., Lee, M., Li, G., Fung, K.P., Leung, P.C., and Lau, C.B.S., 2014, Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice, J. Nutr. Biochem., 25 (4), 395–403.
[14] Chandra, S., Gahlot, M., Choudhary, A.N., Palai, S., de Almeida, R.S., de Vasconcelos, J.E.L., dos Santos, F.A.V., de Farias, P.A.M., and Coutinho, H.D.M., 2023, Scientific evidences of anticancer potential of medicinal plants, Food Chem. Adv., 2, 100239.
[15] Lee, C.C., Dudonné, S., Dubé, P., Desjardins, Y., Kim, J.H., Kim, J.S., Kim, J.E., Park, J.H.Y., Lee, K.W., and Lee, C.Y., 2017, Comprehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of atherosclerosis, Food Chem., 234, 486–493.
[16] Khali, R.R., Mohammed, E.T., and Mustafa, Y.F., 2021, Various promising biological effects of cranberry extract: A review, Clin. Schizophr. Relat. Psychoses, 15, S6.
[17] Mallmann, L.P., O. Rios, A., and Rodrigues, E., 2023, MS-FINDER and SIRIUS for phenolic compound identification from high-resolution mass spectrometry data, Food Res. Int., 163, 112315.
[18] Prasetyaningrum, A., Jos, B., Ratnawati, R., Rokhati, N., Riyanto, T., and Prinanda, G.R., 2022, Sequential microwave-ultrasound assisted extraction of flavonoid from Moringa Oleifera: Product characteristic, antioxidant and antibacterial activity, Indones. J. Chem., 22 (2), 303–316.
[19] Rusli, R., Ningsih, B.A., Rahmadani, A., Febrina, L., Maulidya, V., and Fadraersada, J., 2019, Isolation and antioxidant and antibacterial activity of flavonoid from Ficus variegate Blume, Indones. J. Chem., 19 (2), 538–543.
[20] Dias, R., Oliveira, H., Fernandes, I., Simal-Gandara, J., and Perez-Gregorio, R., 2021, Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics, Crit. Rev. Food Sci. Nutr., 61 (7), 1130–1151.
[21] Peterson, D.M., 2001, Oat antioxidants, J. Cereal Sci., 33 (2), 115–129.
[22] Boulanouar, B., Abdelaziz, G., Aazza, S., Gago, C., and Miguel, M.G., 2013, Antioxidant activities of eight Algerian plant extracts and two essential oils, Ind. Crops Prod., 46, 85–96.
[23] Abd El-Wahab, M., and El-Desouky, M.G., 2022, Study the effect of antioxidants on biological activity and on homopolypropylene; Mechanical and physical properties, J. Indian Chem. Soc., 99 (12), 100764.
[24] Sharifi-Rad, M., Anil Kumar, N.V., Zucca, P., Varoni, E.M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P.V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M.E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A.O., Setzer, W.N., Calina, D., Cho, W.C., and Sharifi-Rad, J., 2020, Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases, Front. Physiol., 11, 00694.
[25] Zhang, Y., Li, Y., Ren, X., Zhang, X., Wu, Z., and Liu, L., 2023, The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds, Food Chem., 402, 134231.
[26] Jalloul, A.B., Garzoli, S., Chaar, H., el Jribi, C., and Abderrabba, M., 2023, Seasonal effect on bioactive compounds recovery using aqueous extraction, antioxidant activities, and volatile profiles of different parts of Scabiosa maritima L. (= Scabiosa atropurpurea subsp. maritima (L.) Arcang.), S. Afr. J. Bot., 152, 63–79.
[27] Yang, J., Qian, S., Na, X., and Zhao, A., 2023, Association between dietary and supplemental antioxidants intake and lung cancer risk: Evidence from a cancer screening trial, Antioxidants, 12 (2), 338.
[28] Rudrapal, M., Khairnar, S.J., Khan, J., Dukhyil, A.B., Ansari, M.A., Alomary, M.N., Alshabrmi, F.M., Palai, S., Deb, P.K., and Devi, R., 2022, Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action, Front. Pharmacol., 13, 806470.
[29] Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., Calina, D., and Sharifi-Rad, J., 2023, Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases, Front. Chem., 11, 1158198.
[30] Mariem, S., Hanen, F., Inès, J., Mejdi, S., and Riadh, K., 2014, Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam, S. Afr. J. Bot., 94, 114–121.
[31] Santos, P.M., Batista, D.L.J., Ribeiro, L.A.F., Boffo, E.F., de Cerqueira, M.D., Martins, D., de Castro, R.D., de Souza-Neta, L.C., Pinto, E., Zambotti-Villela, L., Colepicolo, P., Fernandez, L.G., Canuto, G.A.B., and Ribeiro, P.R., 2018, Identification of antioxidant and antimicrobial compounds from the oilseed crop Ricinus communis using a multiplatform metabolite profiling approach, Ind. Crops Prod., 124, 834-844.
[32] Eroğlu, A.Y., Çakır, Ö., Sağdıç, M., and Dertli, E., 2020, Bioactive characteristics of wild Berberis vulgaris and Berberis crataegina fruits, J. Chem., 2020, 8908301.
[33] Tuyen, P.N.K., Linh, T.T.T., Son, D.V., Thang, N.V., Son, D.V., Trang, N.T.Q., Chi, H.B.L., Ky, N.D.X., Phat, N.T., and Duong, H.T., 2020, Phenolic compounds from the leaves of Ricinus communis Linn, VNUHCM Sci. Technol. Dev., 23 (3), 694–698.
[34] Zefzoufi, M., Fdil, R., Bouamama, H., Gadhi, C., Katakura, Y., Mouzdahir, A., and Sraidi, K., 2021, Effect of extracts and isolated compounds derived from Retama monosperma (L.) Boiss. on anti-aging gene expression in human keratinocytes and antioxidant activity, J. Ethnopharmacol., 280, 114451.
[35] Kiliç, I., and Yeşiloğlu, Y., 2013, Spectroscopic studies on the antioxidant activity of p-coumaric acid, Spectrochim. Acta, Part A, 115, 719–724.
[36] Mozaffari Godarzi, S., Valizade Gorji, A., Gholizadeh, B., Mard, S.A., and Mansouri, E., 2020, Antioxidant effect of p-coumaric acid on interleukin 1-β and tumor necrosis factor-α in rats with renal ischemic reperfusion, Nefrología, 40 (3), 311–319.
[37] Salau, V.F., Erukainure, O.L., Ibeji, C.U., Olasehinde, T.A., Koorbanally, N.A., and Islam, M.S., 2020, Vanillin and vanillic acid modulate antioxidant defense system via amelioration of metabolic complications linked to Fe2+-induced brain tissues damage, Metab. Brain Dis., 35 (5), 727–738.
[38] Enogieru, A.B., Haylett, W., Hiss, D.C., Bardien, S., and Ekpo, O.E., 2018, Rutin as a potent antioxidant: implications for neurodegenerative disorders, Oxid. Med. Cell. Longevity, 2018, 6241017.
[39] Rahman Mazumder, M.A., and Hongsprabhas, P., 2016, Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review, Biomed. Pharmacother., 82, 379–392.
[40] Badhani, B., Sharma, N., and Kakkar, R., 2015, Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications, RSC Adv., 5 (35), 27540–27557.
[41] Puigventós, L., Navarro, M., Alechaga, É., Núñez, O., Saurina, J., Hernández-Cassou, S., and Puignou, L., 2015, Determination of polyphenolic profiles by liquid chromatography-electrospray-tandem mass spectrometry for the authentication of fruit extracts, Anal. Bioanal. Chem., 407 (2), 597–608.
[42] Malki, F., Alouache, A., and Krimat, S., 2023, Effects of various parameters on the antioxidant activities of the synthesized heterocyclic pyrimidinium betaines, Indones. J. Chem., 23 (1), 90–100.
[43] Kleinveld, H.A., Hak-Lemmers, H.L., Stalenhoef, A.F., and Demacker, P.N., 1992, Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: Application of a short procedure for isolating low-density lipoprotein, Clin. Chem., 38 (10), 2066–2072.
[44] Ohkawa, H., Ohishi, N., and Yagi, K., 1979, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 95 (2), 351–358.
[45] El Abbouyi, A., Khlifi, S., El Hachimi, Y., Khalil, A., Es-Safi, N., Belahyan, A., Tellal, R., and El Abbouyi, A., 2006, In vitro antioxidant properties of Salvia verbenaca L. hydromethanolic extract, Indian J. Pharmacol., 38 (4), 276–280.
[46] Abraham, J., 2009, “International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use” in Handbook of Transnational Economic Governance Regimes, Eds. Brouder, A., and Tietje, C., Brill, Leiden, Netherland, 1041–1054.
[47] Feinberg, M., 2001, Validation Interne des Méthodes d’Analyse, Techniques de l’Ingénieur, P224: 1–23.
[48] OIV, 2005, Guide pratique pour la validation, le contrôle qualité, et l’estimation de l’incertitude d’une méthode d’analyse oenologique alternative, Recueil des Méthodes Internationales d’Analyses – OIV Guide de validation – Contrôle qualité, International Organization of Vine and Wine, Dijon, France, OIV-MA-AS1-12.
[49] Mayor, M., and Bourrié, G., 2010, “Validation d’une méthode de chimie analytique - Application au dosage des anions fluorure, chlorure, nitrite, bromure, nitrate, phosphate et sulfate par chromatographie ionique” in Validation des méthodes d’analyse quantitative par le profil d’exactitude, Le Cahier des Techniques de l’Inra, 117–134.
[50] Bouaissi, W., Abidi, M., and Ben Hamida, N., 2013, Optimisation et validation d’une méthode de dosage par HPLC/DAD d’un antihypertenseur le Zofenopril, J. Soc. Chim. Tunis., 15, 39–50.
[51] González-Mauraza, H., Martín-Cordero, C., Alarcón-de-la-Lastra, C., Rosillo, M.A., León-González, A.J., and Sánchez-Hidalgo, M., 2014, Anti-inflammatory effects of Retama monosperma in acute ulcerative colitis in rats, J. Physiol. Biochem., 70 (1), 163–172.
[52] Kim, D.O., and Lee, C.Y., 2004, Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship, Crit. Rev. Food Sci. Nutr., 44 (4), 253–273.
[53] Wafa, G., Amadou, D., Larbi, K.M., and Héla, E.F.O., 2014, Larvicidal activity, phytochemical composition, and antioxidant properties of different parts of five populations of Ricinus communis L., Ind. Crops Prod., 56, 43–51.
[54] El khalki, L., Tilaoui, M., Jaafari, A., Ait Mouse, H., and Zyad, A., 2018, Studies on the dual cytotoxicity and antioxidant properties of Berberis vulgaris extracts and its main constituent berberine, Adv. Pharmacol. Sci., 2018, 3018498.
[55] Yang, L., Zhang, Z., Hu, X., You, L., Khan, R.A.A., and Yu, Y., 2022, Phenolic contents, organic acids, and the antioxidant and bio activity of wild medicinal Berberis plants- as sustainable sources of functional food, Molecules, 27 (8), 2497.
[56] Jebir, R.M., and Mustafa, Y.F., 2022, Watermelon allsweet: A promising natural source of bioactive products, J. Med. Chem. Sci., 5 (5), 652–666.
[57] Yisimayili, Z., Abdulla, R., Tian, Q., Wang, Y., Chen, M., Sun, Z., Li, Z., Liu, F., Aisa, H.A., and Huang, C., 2019, A comprehensive study of pomegranate flowers polyphenols and metabolites in rat biological samples by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry, J. Chromatogr. A, 1604, 460472.
[58] Saada, M., Falleh, H., Catarino, M., Cardoso, S., and Ksouri, R., 2018, Plant growth modulates metabolites and biological activities in Retama raetam (Forssk.) Webb, Molecules, 23 (9), 2177.
[59] Chouhan, H.S., Swarnakar, G., and Jogpal, B., 2021, Medicinal properties of Ricinus communis: A review, Int. J. Pharm. Sci. Res., 12 (7), 3632–3642.
[60] Żymańczyk-Duda, E., Szmigiel-Merena, B., Brzezińska-Rodak, M., and Klimek-Ochab, M., 2018, Natural antioxidants–properties and possible applications, J. Appl. Biotechnol. Bioeng., 5 (4), 251–258.
[61] Iqbal, J., Zaib, S., Farooq, U., Khan, A., Bibi, I., and Suleman, S., 2012, Antioxidant, antimicrobial, and free radical scavenging potential of aerial parts of Periploca aphylla and Ricinus communis, ISRN Pharmacol., 2012, 563267.
[62] Singh, P.P., Ambika, A., and Chauhan, S.M.S., 2009, Activity guided isolation of antioxidants from the leaves of Ricinus communis L., Food Chem., 114 (3), 1069–1072.
[63] Nuralın, L., and Gürü, M., 2022, Berberis vulgaris fruit: Determination of phenolic compounds in extracts obtained by supercritical CO2 and Soxhlet methods using HPLC, Food Anal. Methods, 15 (4), 877–889.
[64] Bouklouze, A., and Digua, K., 2006, Démarche statistique de la validation analytique dans le domaine pharmaceutique (Méthodologie et exemple pratique), Les technologies de laboratoire, 1 (1), 20–24.
[65] Nascu, H., Jäntschi, L., Hodisan, T., Cimpoiu, C., and Cimpan, G., 1999, Some applications of statistics in analytical chemistry, Rev. Anal. Chem., 18 (6), 409–456.
[66] Andrade, J.M., and Estévez-Pérez, M.G., 2014, Statistical comparison of the slopes of two regression lines: A tutorial, Anal. Chim. Acta, 838, 1–12.
[67] OIV, 2005, Practical guide for the validation, quality control, and uncertainty assessment of an alternative oenological analysis method, Compendium of International Analysis of Methods - OIV Guide for the validation – quality Control, International Organization of Vine and Wine, Dijon, France, OIV-MA-AS1-12.
[68] OIV, 2000, Estimation de la limite de détection et de quantification d’une méthode d’analyse, Recueil international des méthodes d’analyses – OIV Estimation de la limite de détection et de quantification, International Organization of Vine and Wine, Dijon, France, OIV-MA-AS1-10.
DOI: https://doi.org/10.22146/ijc.87157
Article Metrics
Abstract views : 1840 | views : 972Copyright (c) 2023 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.