Phytochemistry and Antidiabetic Activity from the Leaf Midrib of Nypa fruticans Wurm.

https://doi.org/10.22146/ijc.89094

Rosnani Nasution(1*), Yoon Jeon(2), Hadis Fadillah(3), Muhammad Bahi(4), Marianne Marianne(5)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(2) College of Veterinary Medicine, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Republic of Korea
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(5) Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
(*) Corresponding Author

Abstract


This study aims to determine the antidiabetic activity of n-hexane and ethanol extracts of Nypa fruticans leaf sheaths. The ethanol extract, with the most active antidiabetic properties from the n-hexane extract, was characterized using GC-MS. The total phenol, total flavonoid, and antioxidant properties were determined, and then the ethanol extract was fractionated. An antidiabetic activity test was carried out using the glucose tolerance method in male Swiss Webster mice. The results showed that subfraction A (the effect of fractionation of ethanol extract) was the most capable of reducing blood sugar levels, namely 247.67 mg/dL in 30 min (the activity is 98.67% compared to glibenclamide). The ethanol extract can reduce blood glucose levels by 203.34 mg/dL at 30 min (81.01% compared to glibenclamide). The results of total phenolic and total flavonoid content tests for the ethanol extract were obtained at 18.0349 mg gallic acid equivalents/g and 2.8309 mg quercetin equivalents/g, respectively. On the other hand, the IC50 antioxidant activity of the extract is 417.4399 ppm. Characterization using GC-MS on the extract showed that the dominant phytoconstituent in the extract is 4-methoxy-6-(2-propenyl)-1,3-benzodioxole, with a composition of 63.45%.

 

 


Keywords


antidiabetic; Nypa fruticans; glucose tolerance

Full Text:

Full Text PDF


References

[1] Ezuruike, U.F., and Prieto, J.M., 2014, The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations, J. Ethnopharmacol., 155 (2), 857–924.

[2] Chaudhury, A., Duvoor, C., Reddy Dendi, V.S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N.S., Montales, M.T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C.K., Lohani, G.P., and Mirza, W., 2017, Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management, Front. Endocrinol., 8, 6.

[3] Pillarisetti, S., 2016, Potential drug combinations to reduce cardiovascular disease burden in diabetes, Trends Pharmacol. Sci., 37 (3), 207–219.

[4] Nugroho, G.D., Wiraatmaja, M.F., Pramadaningtiyas, P.S., Febriyanti, S., Liza, N., Naim, D., Ulumuddin, Y.I., and Setyawan, A.D., 2020, Review: Phytochemical composition, medicinal uses and other utilization of Nypa fruticans, Int. J. Bonorowo Wetlands, 10 (1), 51–65.

[5] Liatis, S., Grammatikou, S., Poulia, K.A., Perrea, D., Makrilakis, K., Diakoumopoulou, E., and Katsilambros, N., 2010, Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal, Eur. J. Clin. Nutr., 64 (7), 727–732.

[6] Yusoff, N.A., Ahmad, M., Al Hindi, B., Widyawati, T., Yam, M.F., Mahmud, R., Abdul Razak, K.N., and Asmawi, M.Z., 2015, Aqueous extract of Nypa fruticans Wurmb. vinegar alleviates postprandial hyperglycemia in normoglycemic rats, Nutrients, 7 (8), 7012–7026.

[7] Yusoff, N.A., Yam, M.F., Beh, H.K., Abdul Razak, K.N., Widyawati, T., Mahmud, R., Ahmad, M., and Asmawi, M.Z., 2015, Antidiabetic and antioxidant activities of Nypa fruticans Wurmb. vinegar sample from Malaysia, Asian Pac. J. Trop. Med., 8 (8), 595–605.

[8] Moonrungsee, N., Jakmunee, J., Peamaroon, N., Boonmee, A., Kasemsuk, T., Seeda, S., and Suwancharoen, S., 2022, Phytochemical and xanthine oxidase inhibitory activity in Nypa fruticans Wurmb. fruit extracts, Trends Sci., 19 (4), 2583.

[9] Velavan, S., 2015, Phytochemical techniques - A review, World J. Sci. Res., 1 (2), 80–91.

[10] Candasamy, M., Murthy, T.E.G.K., Gubiyappa, K., Chellappan, D., and Gupta, G., 2014, Alteration of glucose lowering effect of glibenclamide on single and multiple treatments with fenofibrate in experimental rats and rabbit models, J. Basic Clin. Pharm., 5 (3), 62–67.

[11] Marianne, M., Yuandani, Y., and Rosnani, R., 2011, Antidiabetic activity from ethanol extract of kluwih’s leaf (Artocarpus camansi), J. Nat., 11 (2), 64–68.

[12] Nasution, R., Barus, T., Nasution, P., and Saidi, N., 2014, Isolation and structure elucidation of steroid from leaves of Artocarpus camansi (Kulu) as antidiabetic, Int. J. PharmTech Res., 6 (4), 1279–1285.

[13] Singh, M.P., and Pathak, K., 2015, Animal models for biological screening of anti-diabetic drugs: An overview, Eur. J. Exp. Biol., 5 (5), 37–48.

[14] Badrulhisham, N.S.R., Ab Hamid, S.N.P., Ismail, M.A.H., Yong, Y.K., Muhamad Zakuan, N., Harith, H.H., Saidi, H.I., and Nurdin, A., 2020, Harvested locations influence the total phenolic content, antioxidant levels, cytotoxic, and anti-inflammatory activities of stingless bee honey, J. Asia-Pac. Entomol., 23 (4), 950–956.

[15] Wairata, J., Fadlan, A., Setyo Purnomo, A., Taher, M., and Ersam, T., 2022, Total phenolic and flavonoid contents, antioxidant, antidiabetic and antiplasmodial activities of Garcinia forbesii King: A correlation study, Arabian J. Chem., 15 (2), 103541.

[16] George, D., and Mallery, P., 2019, IBM SPSS Statistics 26 Step by Step: A Simple Guide and Reference, Routledge, New York, US.

[17] Ramírez‐Alarcón, K., Martorell, M., Gürer, E.S., Laher, I., Lam, H.L., Mohieldin, E.A.M., Muddathir, A.M., Akram, M., Iqbal, M., Shafique, H., Leyva‐Gómez, G., Shaheen, S., Kumar, M., Sharifi‐Rad, J., Amarowicz, R., and Butnariu, M., 2023, Myristicin: From its biological effects in traditional medicine in plants to preclinical studies and use as ecological remedy in plant protection, eFood, 4 (3), e90.

[18] Sailesh, K.S., and Padmanabha, P., 2014, A comparative study of the anti diabetic effect of oral administration of cinnamon, nutmeg and peppermint in Wistar albino rats, Int. J. Health Sci. Res., 4 (2), 61–67.

[19] Anisah, L.N., Syafii, W., Pari, G., and Sari, R.K., 2018, Antidiabetic activities and identification of chemical compound from samama (Anthocephalus macrophyllus (Roxb) Havil), Indones. J. Chem., 18 (1), 66–74.

[20] Salehi, B., Ata, A., Anil Kumar, N.V., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Abdulmajid Ayatollahi, S., Valere Tsouh Fokou, P., Kobarfard, F., Zakaria, Z.A., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W.N., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., Adrian Ostrander, E., ur-Rahman, A., Choudhary, M.I., Cho, W.C., and Sharifi-Rad, J., 2019, Antidiabetic potential of medicinal plants and their active components, Biomolecules, 9 (10), 551.

[21] AL-Ishaq, R.K., Abotaleb, M., Kubatka, P., Kajo, K., and Büsselberg, D., 2019, Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels, Biomolecules, 9 (9), 430.

[22] Nasution, R., Nur Fitrah, C., Helwati, H., Murniana, M., Arifin, B., Cutchamzurni, C., Rizal, Y., and Marianne, M., 2018, Antidiabetes activities extract hexane from the peels of Artocarpus camansi Blanco fruit, Asian J. Pharm. Clin. Res., 11 (13), 12–17.

[23] Olugbami, J.O., Gbadegesin, M.A., and Odunola, O.A., 2014, In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus, Afr. J. Med. Med. Sci., 43 (Suppl. 1), 101–109.

[24] Putri, I.J., Fauziyah, F., and Elfita, E., 2013, Aktivitas antioksidan daun dan biji buah nipah (Nypa fruticans) asal pesisir Banyuasin Sumatera Selatan dengan metode DPPH, Maspari J., 5 (1), 16–21.

[25] Sen, S., De, B., Devanna, N., and Chakraborty, R., 2013, Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant, Chin. J. Nat. Med., 11 (2), 149–157.

[26] Charlton, N.C., Mastyugin, M., Török, B., and Török, M., 2023, Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity, Molecules, 28 (3), 1057.

[27] Kumar, S., and Pandey, A.K., 2013, Chemistry and biological activities of flavonoids: An overview, Sci. World J., 2013, 162750.



DOI: https://doi.org/10.22146/ijc.89094

Article Metrics

Abstract views : 386 | views : 165


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.