The Impact of Substitution of Diphenyl Dialumene on the Molecular Structure and Energetic Properties

Salma Babikir(1), Sahar Abdalla(2*), Wefag Mohamed(3), Yunusa Umar(4)

(1) Department of Chemistry, Faculty of Education, Khartoum University, Khartoum 11115, Sudan
(2) Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Faculty of Science, Khartoum University, Khartoum 11115, Sudan
(3) Department of Chemistry, Faculty of Education, Khartoum University, Khartoum 11115, Sudan
(4) Department of Chemical Engineering, Jubail Industrial College, Jubail Industrial City, Jubail 31961, Saudi Arabia
(*) Corresponding Author


The molecular structure, energetic properties, electronic, and vibrational spectroscopy of meta-substituted phenyl dialumene, DPD (Ar–Al=Al–Ar; Ar of the formula C6H5X2, where X = H, CH3, NH2, OH, F, Cl, Br, NO2, and COOH) are investigated by DFT. The singlet states of unsubstituted and substituted DPD adopt trans-planar geometry, while the triplet states adopt non-planar trans-bent geometry. The Al=Al bond length of unsubstituted DPD-H in a singlet state is calculated to be 2.734 Å, and there is no systematic and significant change upon substitution (2.734–2.744 Å). The substitution affects the absolute energy, ionization potential, electron affinity, and reorganization energy. The wavelength of maximum absorbance of DPD-H is determined to be 443 nm, and the substitute analogues DPD-X (X = OH, F, Cl, Br, NO2, CHO, COOH) show a hypsochromic shift, while DPD-CH3 and DPD-NH2 exhibit a bathochromic effect. The HOMO to LUMO+1 transition is the major transition for the meta-substituted DPD, except for X=NO2, where the transition is to LUMO+2. Considering the reorganization energy values, meta-substituted DPD can be useful as hole transporters. In addition, the theoretical data will aid in predicting the behavior of this class of compounds, facilitating the design and synthesis of similar compounds with desired properties.


dialumene; DFT; electron affinity (EA); ionization potential (IP); molecular structure; potential energy distribution; reorganization energy

Full Text:

Full Text PDF


[1] Gu, S.Y., Sheu, J.H., and Su, M.D., 2007, Theoretical studies of the [2 + 4] Diels−Alder cycloaddition reactions of alkene analogues of the group 13 elements with toluene, Inorg. Chem., 46 (6), 2028–2034.

[2] Rivard, E., and Power, P.P., 2007, Multiple bonding in heavier element compounds stabilized by bulky terphenyl ligands, Inorg. Chem., 46 (24), 10047–10064.

[3] Hanusch, F., Groll, L., and Inoue, S., 2020, Recent advances of group 14 dimetallenes and dimetallynes in bond activation and catalysis, Chem. Sci., 12 (6), 2001–2015.

[4] Mizuhata, Y., Sasamori, T., and Tokitoh, N., 2009, Stable heavier carbene analogues, Chem. Rev., 109 (8) 3479–3511.

[5] Bag, P., Weetman, C., and Inoue, S., 2018, Experimental realisation of elusive multiple-bonded aluminium compounds: A new horizon in the aluminium chemistry, Angew. Chem. Int. Ed., 57 (44) 14394–14413.

[6] Bag, P., Porzelt, A., Altmann, P.J., and Inoue, S., 2017, A stable, neutral compound with an aluminium–aluminium double bond, J. Am. Chem. Soc., 139 (41), 14384–14387.

[7] Hobson, K., Carmalt, C.J., and Bakewell, C., 2020, Recent advances in low oxidation state aluminium chemistry, Chem. Sci., 11 (27), 6942–6956.

[8] Wright, R.J., Brynda, M., and Power, P.P., 2006, Synthesis and structure of the “dialuminyne” Na2[Ar′AlAlAr′] and Na2[(Ar′′Al)3]: Al-Al bonding in Al2Na2 and Al3Na2 clusters, Angew. Chem. Int. Ed., 45 (36), 5953–5956.

[9] Weetman, C., Porzelt, A., Bag, P., Hanusch, F., and Inoue, S., 2020, Dialumenes – aryl vs. silyl stabilisation for small molecule activation and catalysis, Chem. Sci., 11 (18), 4817–4827.

[10] Arrowsmith, M., Braunschweig, H., and Stennett, T.E., 2017, Formation and reactivity of electron-precise B−B single and multiple bonds, Angew. Chem. Int. Ed., 56 (1), 96–115.

[11] Weetman, C., 2021, Main Group Multiple Bonds for Bond Activations and Catalysis, Chem. - Eur. J., 27 (6), 1941–1954.

[12] Sugahara, T., Guo, J.D., Sasamori, T., Nagase, S., and Tokitoh, N., 2018, Regioselective cyclotrimerization of terminal alkynes using a digermyne, Angew. Chem. Int. Ed., 57 (13), 3499–3503.

[13] Zhao, Y., Lei, Y., Dong, Q., Wu, B., and Yang, X.J., 2013, Reactivity of dialumane and “dialumene” compounds toward alkenes, Chem. Eur. J., 19 (36), 12059–12066.

[14] Weetman, C., Bag, P., Szilvási, T., Jandl, C., and Inoue, S., 2019, CO2 Fixation and catalytic reduction by a neutral aluminium double bond, Angew. Chem. Int. Ed., 58 (32), 10961–10965.

[15] Yanga, M.C., and Su, M.D., 2019, Theoretical investigations of the reactivity of neutral molecules that feature an M=M (M = B, Al, Ga, In, and Tl) double bond, New J. Chem., 43 (24), 9364–9375.

[16] Ghiasi, R., and Heidarbeigi, A., 2016, Substituent effect on the structure and properties of dialumene, Russ. J. Inorg. Chem., 61 (8), 985–992.

[17] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2009, Gaussian-09 Revision E.01, Gaussian, Inc., Wallingford, CT.

[18] Petrushenko, I.K., 2015, DFT study on adiabatic and vertical ionization potentials of graphene sheets, Adv. Mater. Sci. Eng., 2015, 262513.

[19] Umar, Y., 2022, Analysis of the structures, electronic and spectroscopic properties of piperidine based analgesic drugs carfentanil and acetylfentanyl, Arabian J. Sci. Eng., 47 (1), 511–522.

[20] Ali, Z., Abdalla, S., Hassan, E.A., Umar, Y., and Al-Mogren, M.M., 2022, Theoretical study of electronic and optical properties of functionalized Indigo and Alizarin as potential organic semi-conductors for solar cells applications, Mater. Today Commun., 32, 104048.

[21] Ali, Z., Abdalla, S., Hassan, E.A., Umar, Y., Al-and Mogren, M.M., 2022, A DFT and TD-DFT study on emodin and purpurin and their functionalized molecules to produce promising organic semiconductor materials, J. King Saud Univ., Sci., 34 (5), 102117.

[22] Lu, T., and Chen, F., 2012, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33 (5), 580–592.

[23] Jamróz, M.H., 2013, Vibrational energy distribution analysis (VEDA): Scopes and limitations, Spectrochim. Acta, Part A, 114, 220–230.

[24] Abdalla, S., Umar, Y., and Mokhtar, I., 2016, Conformational and vibrational analysis of 2-, 3- and 4-pyridinecarbonyl chloride using DFT, Z. Phys. Chem., 230 (5-7), 867–882.

[25] Falconer, R.L., Byrne, K.M., Nichol, G.S., Krämer, T., and Cowley, M.J., 2021, Reversible dissociation of a dialumene, Angew. Chem. Int. Ed., 60 (46), 24702–24708.

[26] Vidal Vidal, A., de Vicente Poutás, L.C., Nieto Faza, O., and Silva López, C., 2019, On the use of popular basis sets: Impact of the intramolecular basis set superposition error, Molecules, 24 (20), 3810.

[27] Nakajima, T., and Hirao, K., 2005, Recent development of relativistic molecular theory, Monatsh. Chem., 136 (6), 965–986.

[28] Umar, Y., Abdalla, S., Haque, S.M., Moran, G.S., Ishaq, A., Villada, W.C., Leone, J.D., and Bunster, M., 2020, Theoretical investigation of the molecular structure, vibrational spectra, and molecular docking of tramadol using density functional theory, J. Chin. Chem. Soc., 67 (1), 62–71.

[29] Oshi, R., Abdalla, S., and Springborg, M., 2017, Study of the influence of functionalization on the reorganization energy of naphthalene using DFT, Comput. Theor. Chem., 1099, 209–215.

[30] Grimme, S., Hansen, A., Brandenburg, J.G., and Bannwarth, C., 2016, Dispersion-corrected mean-field electronic structure methods, Chem. Rev., 116 (9), 5105–5154.

[31] Mardirossian, N., and Head-Gordon, M., 2017, Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals, Mol. Phys., 115 (19), 2315–2372.

[32] Murray, J.S., and Politzer, P., 2017, Molecular electrostatic potentials and noncovalent interactions, WIREs Comput. Mol. Sci., 7 (6), e1326.

[33] Dennington, R., Keith, T.A., and Millam, J.M., 2016, GaussView, Version 6, Semichem Inc., Shawnee Mission, KS.

[34] Bader, R.F.W., and Fang, D.C., 2005, Properties of atoms in molecules: Caged atoms and the Ehrenfest force, J. Chem. Theor. Comput., 1 (3), 403–414.

[35] Esser, S., 2019, The quantum theory of atoms in molecules and the interactive conception of chemical bonding, Philos. Sci., 86 (5), 1307–1317.

[36] Michalski, M., Gordon, A.J., and Berski, S., 2019, The nature of the T=T double bond (T=B, Al, Ga, In) in dialumene and its derivatives: Topological study of the electron localization function (ELF), J. Mol. Model., 25 (8), 211.

[37] Dorosti, N., Nikpour, S., Molaei, F., and Kubicki, M., 2021, A triorganotin(IV) cocrystal with pyridinic phosphoramide: Crystal structure and DFT calculations, Chem. Pap., 75 (6), 2503–2516.


Article Metrics

Abstract views : 1395 | views : 400

Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.