Synthesis and Characterization of Nickel Nanoparticles: Biological and Photocatalytic Properties

https://doi.org/10.22146/ijc.90034

Fadliah Fadliah(1), Indah Raya(2*), Ahyar Ahmad(3), Paulina Taba(4), Muhammad Burhanuddinnur(5), Maming Gaffar(6), Tri Widayati Putri(7), Arfiani Nur(8), Andi Nur Fitriani Abubakar(9), Rachmin Munadi(10), Ahmad Fudhail Majid(11), Irham Pratama(12), M. Yasser(13), Sulistiani Jarre(14), Harningsih Karim(15)

(1) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Department of Mining Engineering, Faculty of Earth and Energy Technology, Universitas Trisakti, Jl. Kyai Tapa No. 1, Jakarta 11440, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(5) Department of Geological Engineering, Faculty of Earth and Energy Technology, Universitas Trisakti, Jl. Kyai Tapa No. 1, Jakarta 11440, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(7) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Department of Fishery Technology, Institute of Technology and Business Maritime Balik Diwa, Jl. Perintis Kemerdekaan VIII No. 8, Makassar 90245, Indonesia
(8) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Department of Chemistry, Faculty of Science and Technology, Universitas Islam Negeri Alauddin Makassar, Jl. Sultan Alauddin No. 63, Makassar 92113, Indonesia
(9) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Department of Chemistry, Faculty of Science, Universitas Muhammadiyah Bulukumba, Bulukumba 92513, Indonesia
(10) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Science, Makassar Islamic University, Jl. Perintis Kemerdekaan Km. 9, Makassar 90245, Indonesia
(11) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Jl. Daeng Tata, Makassar 90244, Indonesia
(12) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Department of Chemical Engineering, Universitas Fajar, Jl. Prof. Dr. H. Abdurrahman Basalamah No. 101, Makassar 90231, Indonesia
(13) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Department of Chemical Engineering, Politeknik Negeri Ujung Pandang, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(14) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(15) Department of Pharmacy, School of Pharmacy YAMASI, Jl. Mapala 2 Blok D5 No. 10, Makassar 90222, Indonesia
(*) Corresponding Author

Abstract


The potential uses of ecologically benign nickel nanoparticle manufacturing in various sectors, such as biomedicine, energy storage, and catalysis, have garnered much interest. This paper covers green approaches to nickel nanoparticle manufacturing, which integrate natural substances as stabilizing and reducing agents with eco-friendly processes. Phytochemicals derived from bacteria, microorganisms, and plant leaf extracts can convert nickel ions (Ni2+) into nickel nanoparticles. Room temperature is used for the synthesis procedure, and neither dangerous compounds nor unusual reaction conditions are used. Using a variety of analytical methods, the resultant nickel nanoparticles were characterized. We also investigate the possibility of using the generated nickel nanoparticles as a cytotoxic, photocatalytic, antioxidant, and antibacterial agents. The antimicrobial activity of nickel nanoparticles demonstrates their potent antibacterial properties, while their antioxidant activity demonstrates their capacity to combat free radicals effectively. Furthermore, nickel nanoparticles' cytotoxic activity demonstrates their capacity to kill cancer cells, and their photocatalytic activity demonstrates their efficiency in breaking down organic contaminants. This review highlights the value of ecologically benign synthetic methods and creates new avenues for developing nickel nanoparticle applications in health and the environment.


Keywords


nickel nanoparticles; biosynthesis; biological activity; photocatalytic properties

Full Text:

Full Text PDF


References

[1] Fidan, E.B., Bali, E.B., and Apaydin, F.G., 2024, Comparative study of nickel oxide and nickel oxide nanoparticles on oxidative damage, apoptosis, and histophatological alterations in rat lung tissues, J. Trace Elem. Med. Biol., 83, 127379.

[2] Bordiwala, R.V., 2023, Green synthesis and applications of metal nanoparticles. - A review article, Results Chem., 5, 100832.

[3] Ahmad, W., Chandra Bhatt, S., Verma, M., Kumar, V., and Kim, H., 2022, A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications, Environ. Nanotechnol., Monit. Manage., 18, 100674.

[4] Zhang, Q., Cao, J., Zhao, P., Zhang, Y., Li, Y., Xu, S., Ye, J., and Qian, C., 2023, Green synthesis of nickel ferrite nanoparticles for efficient enhancement of lignocellulosic hydrolysate-based biohydrogen production, Biochem. Eng. J., 194, 108885.

[5] Abdallah, Y., Ogunyemi, S.O., Bi, J., Wang, F., Huang, X., Shi, X., Jiang, J., Ibrahim, E., Mohany, M., Al-Rejaie, S.S., Yan, C., and Li, B., 2024, Nickel oxide nanoparticles: A new generation nanoparticles to combat bacteria Xanthomonas oryzae pv. oryzae and enhance rice plant growth, Pestic. Biochem. Physiol., 200, 105807.

[6] Ahmed, N.N., Pattar, J., Murthy, R.N.K., Kumar, M.R.A., Bhoomika, V., Raghavendra, N., and Ravikumar, C.R., 2024, Electrochemical studies of nickel oxide nanoparticles via solution combustion method using green and chemical fuels, Sustainable Chem. Environ., 5, 100063.

[7] Ghorui, K., Sarkar, R., and Tudu, B., 2023, Effect of precursor concentration on structural and optical properties of nickel oxide nanoparticles synthesized by facile sol-gel method, Mater. Today: Proc., In Press, Corrected Proof.

[8] Abbasi, B.A., Iqbal, J., Nasir, J.A., Zahra, S.A., Shahbaz, A., Uddin, S., Hameed, S., Gul, F., Kanwal, S., and Mahmood, T., 2020, Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: Characterization and diverse biomedical applications, Microsc. Res. Tech., 83 (11), 1308–1320.

[9] Ismael, M., 2021, Ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review, Sol. Energy Mater. Sol. Cells, 219, 110786.

[10] Soufi, A., Hajjaoui, H., Elmoubarki, R., Abdennouri, M., Qourzal, S., and Barka, N., 2021, Spinel ferrites nanoparticles: Synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants – A review, Appl. Surf. Sci. Adv., 6, 100145.

[11] Aisida, S.O., Ugwu, K., Akpa, P.A., Nwanya, A.C., Ejikeme, P.M., Botha, S., Ahmad, I., Maaza, M., and Ezema, F.I., 2019, Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium, Mater. Chem. Phys., 237, 121859.

[12] Aisida, S.O., Akpa, P.A., Ahmad, I., Zhao, T., Maaza, M., and Ezema, F.I., 2020, Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications, Eur. Polym. J., 122, 109371.

[13] Javed, R., Zia, M., Naz, S., Aisida, S.O., ul Ain, N., and Ao, Q., 2020, Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects, J. Nanobiotechnol., 18 (1), 172.

[14] Aisida, S.O., Madubuonu, N., Alnasir, M.H., Ahmad, I., Botha, S., Maaza, M., and Ezema, F.I., 2020, Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications, Appl. Nanosci., 10 (1), 305–315.

[15] Aisida, S.O., Ali, A., Oyewande, O.E., Ahmad, I., Ul-Hamid, A., Zhao, T., Maaza, M., and Ezema, F.I., 2021, Biogenic synthesis enhanced structural, morphological, magnetic and optical properties of zinc ferrite nanoparticles for moderate hyperthermia applications, J. Nanopart. Res., 23 (2), 47.

[16] Aisida, S.O., Batool, A., Khan, F.M., Rahman, L., Mahmood, A., Ahmad, I., Zhao, T., Maaza, M., and Ezema, F.I., 2020, Calcination induced PEG-Ni-ZnO nanorod composite and its biomedical applications, Mater. Chem. Phys., 255, 123603.

[17] Sonu, S., Dutta, V., Sharma, S., Raizada, P., Hosseini-Bandegharaei, A., Kumar Gupta, V., and Singh, P., 2019, Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water, J. Saudi Chem. Soc., 23 (8), 1119–1136.

[18] Mmelesi, O.K., Masunga, N., Kuvarega, A., Nkambule, T.T., Mamba, B.B., and Kefeni, K.K., 2021, Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment, Mater. Sci. Semicond. Process., 123, 105523.

[19] Atacan, K., Güy, N., Çakar, S., and Özacar, M., 2019, Efficiency of glucose oxidase immobilized on tannin modified NiFe2O4 nanoparticles on decolorization of dye in the Fenton and photo-biocatalytic processes, J. Photochem. Photobiol., A, 382, 111935.

[20] Punitha, U., and Mary Saral, A., 2024, Nickel oxide nanoparticles from Sargassum wightii: Synthesis, characterization, and biomedical applications, Results Chem., 7, 101289.

[21] Shi, M., Qiu, T., Tang, B., Zhang, G., Yao, R., Xu, W., Chen, J., Fu, X., Ning, H., and Peng, J., 2021, Temperature-controlled crystal size of wide band gap nickel oxide and its application in electrochromism, Micromachines, 12 (1), 80.

[22] Din, M.I., Nabi, A.G., Rani, A., Aihetasham, A., and Mukhtar, M., 2018, Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials, Environ. Nanotechnol., Monit. Manage., 9, 29–36.

[23] Iqbal, J., Abbasi, B.A., Mahmood, T., Kanwal, S., Ali, B., Shah, S.A., and Khalil, A.T., 2017, Plant-derived anticancer agents: A green anticancer approach, Asian Pac. J. Trop. Biomed., 7 (12), 1129–1150.

[24] Iqbal, J., Abbasi, B.A., Batool, R., Mahmood, T., Ali, B., Khalil, A.T., Kanwal, S., Shah, S.A., and Ahmad, R., 2018, Potential phytocompounds for developing breast cancer therapeutics: Nature’s healing touch, Eur. J. Pharmacol., 827, 125–148.

[25] Sumathi, S., Dharani, B., Sivaprabha, J., Sonia Raj, K., and Padma, P., 2013, Cell death induced by methanolic extract of Prosopis cineraria leaves in MCF-7 breast cancer cell line, Int. J. Pharm. Sci. Invent., 2 (1), 21–26.

[26] Roberson, M., Rangari, V., Jeelani, S., Samuel, T., and Yates, C., 2014, Synthesis and characterization silver, zinc oxide and hybrid silver/zinc oxide nanoparticles for antimicrobial applications, Nano LIFE, 4 (1), 1440003.

[27] Klein, S., Sommer, A., Distel, L.V.R., Hazemann, J.L., Kröner, W., Neuhuber, W., Müller, P., Proux, O., and Kryschi, C., 2014, Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy, J. Phys. Chem. B, 118 (23), 6159–6166.

[28] Namvar, F., Rahman, H.S., Mohamad, R., Baharara, J., Mahdavi, M., Amini, E., Chartrand, M.S., and Yeap, S.K., 2014, Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract, Int. J. Nanomed., 9, 2479–2488.

[29] El-Sayed, I.H., Huang, X., and El-Sayed, M.A., 2006, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett., 239 (1), 129–135.

[30] Chatterjee, A.K., Sarkar, R.K., Chattopadhyay, A.P., Aich, P., Chakraborty, R., and Basu, T., 2012, A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli, Nanotechnology, 23 (8), 085103.

[31] Kar, A., and Ray, A.K., 2014, Synthesis of nano-spherical nickel by templating Hibiscus flower petals, Am. J. Nanosci. Nanotechnol., 2 (2), 17–20.

[32] Velsankar, K., Aravinth, K., Yong, W., Mohandoss, S., Yong, R.L., and Paiva-Santos, A.C., 2023, NiO nanoparticles an algorithm of their biosynthesis, toxicity, and biomedical activities, J. Mol. Struct., 1291, 136012.

[33] Hamidian, K., Zarin, A., Sarani, M., Barani, M., and Adeli-Sardou, M., 2024, Study of cytotoxic performance of green-synthesized Co doped NiO nanoparticles over human breast cancer cells, Inorg. Chem. Commun., 162, 112234.

[34] Indumathi, T., Hirad, A.H., Alarfaj, A.A., Ranjith Kumar, E., and Chandrasekaran, K., 2023, Phytoextract-mediated synthesis of Cu doped NiO nanoparticle using Cullon tomentosum plant extract with efficient antibacterial and anticancer property, Ceram. Int., 49 (19), 31829–31838.

[35] Ananthi, S., Kavitha, M., Balamurugan, A., Ranjith Kumar, E., Magesh, G., Abd El-Rehim, A.F., Srinivas, C., Anilkumar, P., Suryakanth, J., and Sharmila Rahale, C., 2023, Synthesis, analysis and characterization of Camellia sinensis mediated synthesis of NiO nanoparticles for ethanol gas sensor applications, Sens. Actuators, B, 387, 133742.

[36] Nabi, G., Atiq, B., Elsaeedy, H.I., Tanveer, M., Ali, W., and Riaz, A., 2023, Bandgap tuning by controlled growth of Mo doped NiO nanoparticles and their functional role as excellent photocatalytic degradation agent, Inorg. Chem. Commun., 157, 111448.

[37] Vishnu, G., Singh, S., Kaul, N., Ramamurthy, P.C., Naik, T.S.S.K., Viswanath, R., Kumar, V., Bhojya Naik, H.S., Prathap, A., Anil Kumara, H.A., Singh, J., and Khan, N.A., 2023, Green synthesis of nickel-doped magnesium ferrite nanoparticles via combustion for facile microwave-assisted optical and photocatalytic applications, Environ. Res., 235, 116598.

[38] Taqvi, S.I.H., Solangi, A.R., Buledi, J.A., Khand, N.H., Junejo, B., Memon, A.F., Ameen, S., Bhatti, A., Show, P.L., Vasseghian, Y., and Karimi-Maleh, H., 2022, Plant extract-based green fabrication of nickel ferrite (NiFe2O4) nanoparticles: An operative platform for non-enzymatic determination of pentachlorophenol, Chemosphere, 294, 133760.

[39] Jabeen, Z., Dawood, A., Alomar, M., Khan, S.N., Ali, I., Asif, M., Abbas, W., Sultan Irshad, M., and Ahmad, M., 2023, Hydrothermal synthesis of nickel substituted magnesium ferrites (NixMg1-xFe2O4) and insight into the detailed structural, magnetic and electrochemical properties, Surf. Interfaces, 40, 103130.

[40] Bilal, A., Kasi, J.K., Kasi, A.K., Bokhari, M., Ahmed, S., and Ali, S.W., 2022, Environment friendly synthesis of nickel ferrite nanoparticles using Brassica oleracea var. capitate (green cabbage) as a fuel and their structural and magnetic characterizations, Mater. Chem. Phys., 290, 126483.

[41] Manohar, A., Vijayakanth, V., Vinodhini, V., Chintagumpala, K., Manivasagan, P., Jang, E.S., and Kim, K.H., 2023, Zinc- doped nickel ferrite nanoparticles for ESR, hyperhtermia and thier cytotoxicity in mouse muscle fibroblast (BLO-11) and human breast cancer (MDA-MB-231) cell lines, J. Alloys Compd., 960, 170780.

[42] Mahmood Abdelghani, G., Basim Al-Zubaidi, A., and Ben Ahmed, A., 2023, Synthesis, characterization, and study of the influence of energy of irradiation on physical properties and biologic activity of nickel ferrite nanostructures, J. Saudi Chem. Soc., 27 (2), 101623.

[43] Kalita, C., Boruah, P.K., Das, M.R., and Saikia, P., 2022, Facile green synthesis of nickel-ferrite-rGO (NiFe2O4/rGO) nanocomposites for efficient water purification under direct sunlight, Inorg. Chem. Commun., 146, 110073.

[44] Adarshgowda, N., Naik, H.S.B., Viswanath, R., Vishnu, G., and Prathap, A., 2023, Bifunctional application of facile green-silver doped nickel ferrite nanoparticles via-combustion method, Chem. Data Collect., 47, 101066.

[45] Sarala, E., Vinuth, M., Naik, M.M., and Reddy, Y.V.R., 2022, Green synthesis of nickel ferrite nanoparticles using Terminalia catappa: Structural, magnetic and anticancer studies against MCF-7 cell lines, J. Hazard. Mater. Adv., 8, 100150.

[46] Kefeni, K.K., Msagati, T.A.M., Nkambule, T.T.I., and Mamba, B.B., 2019, Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity, Mater. Sci. Eng., C, 107, 110314.

[47] Hezam, F.A., Rajeh, A., Nur, O., and Mustafa, M.A., 2020, Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications, Phys. B, 596, 412389.

[48] Zeynizadeh, B., and Rahmani, S., 2019, Sulfonyl-bridged (copper-immobilized nickel ferrite) with activated montmorillonite, [(NiFe2O4@Cu)SO2(MMT)]: A new class of magnetically separable clay nanocomposite systems towards Hantzsch synthesis of coumarin-based 1,4-dihydropyridines, RSC Adv., 9 (14), 8002–8015.

[49] Iftikhar, S., Warsi, M.F., Haider, S., Musaddiq, S., Shakir, I., and Shahid, M., 2019, The impact of carbon nanotubes on the optical, electrical, and magnetic parameters of Ni2+ and Co2+ based spinel ferrites, Ceram. Int., 45 (17, Part A), 21150–21161.

[50] Hussain, D., Siddiqui, M.F, and Khan, T.A., 2020, Preparation of NiFe2O4/polythiophene nanocomposite and its enhanced adsorptive uptake of Janus green B and Fuchsin basic from aqueous solution: Isotherm and kinetics studies, Environ. Prog. Sustainable Energy, 39 (3), e13371.

[51] Bazgir, A., Khorshidi, A., Kamani, H., Ashrafi, S.D., and Naghipour, D., 2019, Modeling of azo dyes adsorption on magnetic NiFe2O4/RGO nanocomposite using response surface methodology, J. Environ. Health Sci. Eng., 17 (2), 931–947.

[52] Gorgizadeh, M., Azarpira, N., Lotfi, M., Daneshvar, F., Salehi, F., and Sattarahmady, N., 2019, Sonodynamic cancer therapy by a nickel ferrite/carbon nanocomposite on melanoma tumor: In vitro and in vivo studies, Photodiagn. Photodyn. Ther., 27, 27–33.

[53] Verma, B., and Balomajumder, C., 2020, Synthesis of magnetic nickel ferrites nanocomposites: An advanced remediation of electroplating wastewater, J. Taiwan Inst. Chem. Eng., 112, 106–115.

[54] Katowah, D.F., Hussein, M.A., Alam, M.M., Ismail, S.H., Osman, O.I., Sobahi, T.R., Asiri, A.M., Ahmed, J., and Rahman, M.M., 2020, Designed network of ternary core-shell PPCOT/NiFe2O4/C-SWCNTs nanocomposites. A Selective Fe3+ ionic sensor, J. Alloys Compd., 834, 155020.

[55] El-saied, H.A., and Motawea, E.T., 2020, Optimization and adsorption behavior of nanostructured NiFe2O4/poly AMPS grafted biopolymer, J. Polym. Environ., 28 (9), 2335–2351.

[56] Kumar, A., Singh, A.K., Tomar, M., Gupta, V., Kumar, P., and Singh, K., 2020, Electromagnetic interference shielding performance of lightweight NiFe2O4/rGO nanocomposite in X- band frequency range, Ceram. Int., 46 (10, Part A), 15473–15481.

[57] Askari, M.B., and Salarizadeh, P., 2020, Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material, Int. J. Hydrogen Energy, 45 (51), 27482–27491.

[58] Nivetha, R., Chella, S., Kollu, P., Jeong, S.K., Bhatnagar, A., and Andrews, N.G., 2017, Cobalt and nickel ferrites based graphene nanocomposites for electrochemical hydrogen evolution, J. Magn. Magn. Mater., 448, 165–171.

[59] Wu, Y., Shu, R., Li, Z., Guo, C., Zhang, G., Zhang, J., and Li, W., 2019, Design and electromagnetic wave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/nickel ferrite ternary nanocomposites, J. Alloys Compd., 784, 887–896.

[60] Kumar, N., Kumar, A., Huang, G.M., Wu, W.W., and Tseng, T.Y., 2017, Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors, Appl. Surf. Sci., 433, 1100–1112.

[61] Livani, M.J., Ghorbani, M., and Mehdipour, H., 2018, Preparation of an activated carbon from hazelnut shells and its hybrids with magnetic NiFe2O4 nanoparticles, New Carbon Mater., 33 (6), 578–586.

[62] Soleimani Lashkenari, M., Ghorbani, M., Naghibi, H., and Khalaj, P., 2019, Synthesis and characterization of polyrhodanine/nickel ferrite nanocomposite with an effective and broad spectrum antibacterial activity, Polym.-Plast. Technol. Mater., 58 (13), 1461–1470.

[63] Fröhlich, A.C., Foletto, E.L., and Dotto, G.L., 2019, Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions, J. Cleaner Prod., 229, 828–837.

[64] Thirupathy, C., Cathrin Lims, S., John Sundaram, S., Mahmoud, A.H., and Kaviyarasu, K., 2020, Equilibrium synthesis and magnetic properties of BaFe12O19/NiFe2O4 nanocomposite prepared by co precipitation method, J. King Saud Univ., Sci., 32 (2), 1612–1618.

[65] Reddy, C.V., Koutavarapu, R., Reddy, K.R., Shetti, N.P., Aminabhavi, T.M., and Shim, J., 2020, Z-scheme binary 1D ZnWO4 nanorods decorated 2D NiFe2O4 nanoplates as photocatalysts for high efficiency photocatalytic degradation of toxic organic pollutants from wastewater, J. Environ. Manage., 268, 110677.

[66] Gebreslassie, G., Bharali, P., Chandra, U., Sergawie, A, Boruah, P.K., Das, M.R., and Alemayehu, E., 2019, Novel g-C3N4/graphene/NiFe2O4 nanocomposites as magnetically separable visible light driven photocatalysts, J. Photochem. Photobiol., A, 382, 111960.

[67] Babu, B., Koutavarapu, R., Shim, J., and Yoo, K., 2020, SnO2 quantum dots decorated NiFe2O4 nanoplates: 0D/2D heterojunction for enhanced visible-light-driven photocatalysis, Mater. Sci. Semicond. Process., 107, 104834.

[68] Rahman, A., Warsi, M.F., Shakir, I., Shahid, M., and Zulfiqar, S., 2020, Fabrication of Ce3+ substituted nickel ferrite-reduced graphene oxide heterojunction with high photocatalytic activity under visible light irradiation, J. Hazard. Mater., 394, 122593.

[69] Mamba, G., Gangashe, G., Moss, L., Hariganesh, S., Thakur, S., Vadivel, S., Mishra, A.K., Vilakati, G.D., Muthuraj, V., and Nkambule, T.T.I., 2020, State of the art on the photocatalytic applications of graphene based nanostructures: From elimination of hazardous pollutants to disinfection and fuel generation, J. Environ. Chem. Eng., 8 (2), 103505.

[70] Nasiri, R., Arsalani, N., and Panahian, Y., 2018, One-pot synthesis of novel magnetic three-dimensional graphene/chitosan/nickel ferrite nanocomposite for lead ions removal from aqueous solution: RSM modelling design, J. Cleaner Prod., 201, 507–515.

[71] Thanh, N.T.K., Maclean, N., and Mahiddine, S., 2014, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev., 114 (15), 7610–7630.

[72] Alamier, W.M., Hasan, N., Nawaz, M.D.S., Ismail, K.S., Shkir, M., Malik, M.A., and Oteef, M.D.Y., 2023, Biosynthesis of NiFe2O4 nanoparticles using Murayya koenigii for photocatalytic dye degradation and antibacterial application, J. Mater. Res. Technol., 22, 1331–1348.

[73] Alijani, H.Q., Pourseyedi, S., Torkzadeh-Mahani, M., Seifalian, A., and Khatami, M., 2020, Bimetallic nickel-ferrite nanorod particles: Greener synthesis using rosemary and its biomedical efficiency, Artif. Cells, Nanomed., Biotechnol., 48 (1), 242–251.

[74] Karunakaran, G., Jagathambal, M., Van Minh, N., Kolesnikov, E., and Kuznetsov, D., 2018, Green synthesis of NiFe2O4 spinel-structured nanoparticles using Hydrangea paniculata flower extract with excellent magnetic property, JOM, 70 (7), 1337–1343.

[75] Gayathri Manju, B., and Raji, P., 2020, Green synthesis, characterization, and antibacterial activity of copper-nickel mixed ferrite nanoparticles mediated by lime juice, Appl. Phys. A, 126 (3), 156.

[76] Saini, R.K., Rani, M., Shanker, U., and Sillanpää, M., 2024, Sunlight-mediated efficient remediation of organic pollutants from water by chitosan co-decorated nanocomposites of NiO loaded with WO3: Green synthesis, kinetics, and photoactivity, Inorg. Chem. Commun., 165, 112450.

[77] Messai, Y., Bouarroudj, T., Chetoui, A., Belkhettab, I., Chabi, T., Schmutz, M., Bezzi, H., Ziouche, A., Hafs, A., and Mekki, D.E., 2023, Correlating pH-controlled green synthesis of NiO nanoparticles with their magnetic properties and catalytic performance, Mater. Today Commun., 37, 107530.

[78] Devabharathi, V., Jagan, K.S.G., Priyan, S.R., Vidaarth, T.M.N., Surendhiran, S., Khadar, Y.A.S., and Kandasamy, K., 2024, Rational design of NiO nanoflakes and porous GCN nanocomposite for synergic effectiveness on photocatalytic degradation of industry effluents and biological activity, Chem. Phys. Impact, 8, 100637.

[79] Wardani, M., Yulizar, Y., Abdullah, I., and Bagus Apriandanu, D.O., 2019, Synthesis of NiO nanoparticles via green route using Ageratum conyzoides L. leaf extract and their catalytic activity, IOP Conf. Ser.: Mater. Sci. Eng., 509 (1), 012077.

[80] Moavi, J., Buazar, F., and Sayahi, M.H., 2021, Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives, Sci. Rep., 11 (1), 6296.

[81] Iqbal, J., Abbasi, B.A., Ahmad, R., Mahmoodi, M., Munir, A., Zahra, S.A., Shahbaz, A., Shaukat, M., Kanwal, S., Uddin, S., Mahmood, T., and Capasso, R., 2020, Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (Wall.) and investigation of its multiple in vitro biological potentials, Biomedicines, 8 (5), 117.

[82] Akpojevwa, T.N., Aisida, S.O., Uzoeto, H.O., Ahmad, I., and Ezema, F.I., 2023, In-vitro biosynthesis of concentration-induced nickel oxide nanoparticles for antibacterial applications, Hybrid Adv., 3, 100054.

[83] Lingaraju, K., Raja Naika, H., Nagabhushana, H., Jayanna, K., Devaraja, S., and Nagaraju, G., 2020, Biosynthesis of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application, Arabian J. Chem., 13 (3), 4712–4719.

[84] Hussein, B.Y., and Mohammed, A.M., 2021, Biosynthesis and characterization of nickel oxide nanoparticles by using aqueous grape extract and their biological applications, Results Chem., 3, 100142.

[85] Zhang, Y., Mahdavi, B., Mohammadhosseini, M., Rezaei-Seresht, E., Paydarfard, S., Qorbani, M., Karimian, M., Abbasi, N., Ghaneialvar, H., and Karimi, E., 2021, Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical characterization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties, Arabian J. Chem., 14 (5), 103105.

[86] Ibraheem, F., Aziz, M.H., Fatima, M., Shaheen, F., Ali, S.M., and Huang, Q., 2019, In vitro cytotoxicity, MMP and ROS activity of green synthesized nickel oxide nanoparticles using extract of Terminalia chebula against MCF-7 cells, Mater. Lett., 234, 129–133.

[87] Sharmila, G., Thirumarimurugan, M., and Muthukumaran, C., 2019, Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities, Microchem. J., 145, 578–587.

[88] Rameshthangam, P., and Chitra, J.P., 2018, Synergistic anticancer effect of green synthesized nickel nanoparticles and quercetin extracted from Ocimum sanctum leaf extract, J. Mater. Sci. Technol., 34 (3), 508–522.

[89] Iqbal, J., Abbasi, B.A., Mahmood, T., Hameed, S., Munir, A., and Kanwal, S., 2019, Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications, Appl. Organomet. Chem., 33, e4950.

[90] Nwanya, A.C., Ndipingwi, M.M., Ikpo, C.O., Obodo, R., Nwanya, S.C., Botha, S., Ezema, F.I., Iwuoha, E.I., and Maaza, M., 2020, Zea mays lea silk extract mediated synthesis of nickel oxide nanoparticles as positive electrode material for asymmetric supercabattery, J. Alloys Compd., 822, 153581.

[91] Angel Ezhilarasi, A., Judith Vijaya, J., Kaviyarasu, K., John Kennedy, L., Ramalingam, R.J., and Al-Lohedan, H.A., 2018, Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties, J. Photochem. Photobiol., B, 180, 39–50.

[92] Housein, Z., Kareem, T.S., and Salihi, A., 2021, In vitro anticancer activity of hydrogen sulfide and nitric oxide alongside nickel nanoparticle and novel mutations in their genes in CRC patients, Sci. Rep., 11 (1), 2536.

[93] Malik, A.R., Aziz, M.H., Atif, M., Irshad, M.S., Ullah, H., Gia, T.N., Ahmed, H., Ahmad, S., and Botmart, T., 2022, Lime peel extract induced NiFe2O4 NPs: Synthesis to applications and oxidative stress mechanism for anticancer, antibiotic activity, J. Saudi Chem. Soc., 26 (2), 101422.

[94] Abbasi, B.A., Iqbal, J., Mahmood, T., Ahmad, R., Kanwal, S., and Afridi, S., 2019, Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: Characterization and different biological applications, Mater. Res. Express, 6 (8), 0850a7.

[95] Khan, S., Ansari, A.A., Malik, A., Chaudhary, A.A., Syed, J.B., and Khan, A.A., 2019, Preparation, characterizations and in vitro cytotoxic activity of nickel oxide nanoparticles on HT-29 and SW620 colon cancer cell lines, J. Trace Elem. Med. Biol., 52, 12–17.

[96] Beheshtkhoo, N., Kouhbanani, M.A.J., Savardashtaki, A., Amani, A.M., and Taghizadeh, S., 2018, Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material, Appl. Phys. A, 124 (5), 363.

[97] Radini, I.A., Hasan, N., Malik, M.A., and Khan, Z., 2018, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications, J. Photochem. Photobiol., B, 183, 154–163.

[98] Khosroshahi, N., Bakhtian, M., and Safarifard, V., 2022, Mechanochemical synthesis of ferrite/MOF nanocomposite: Efficient photocatalyst for the removal of meropenem and hexavalent chromium from water, J. Photochem. Photobiol., A, 431, 114033.

[99] Shen, M., Fu, L., Tang, J., Liu, M., Song, Y., Tian, F., Zhao, Z., Zhang, Z., and Dionysiou, D.D., 2018, Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants, J. Hazard. Mater., 350, 1–9.

[100] Bayantong, A.R.B., Shih, Y.J., Dong, C.D., Garcia-Segura, S., and de Luna, M.D.G., 2021, Nickel ferrite nanoenabled graphene oxide (NiFe2O4@GO) as photoactive nanocomposites for water treatment, Environ. Sci. Pollut. Res., 28 (5), 5472–5481.

[101] Sakhare, P.A., Pawar, S.S., Bhat, T.S., Yadav, S.D., Patil, G.R., Patil, P.S., and Sheikh, A.D., 2020, Magnetically recoverable BiVO4/NiFe2O4 nanocomposite photocatalyst for efficient detoxification of polluted water under collected sunlight, Mater. Res. Bull., 129, 110908.

[102] Dharmaraja, C., Nicholas, P.E., Ramya, P., Premkumar, I.J.I., Vijayan, V., and Senthilkumar, N., 2021, Investigation on photocatalytic activity of ZnS/NiFe2O4 NCs under sunlight irradiation via a novel two-step synthesis approach, Inorg. Chem. Commun., 126, 108481.

[103] Palanivel, B., and Alagiri, M., 2020, Construction of rGO supported integrative NiFe2O4/g-C3N4 nanocomposite: Role of charge transfer for boosting the OH radical production to enhance the photo-Fenton degradation, ChemistrySelect, 5 (31), 9765–9775.

[104] Gupta, K., Komal, K., Nidhi, N., Tikoo, K.B., Kumar, V., Bansal, S., Kaushik, A., and Singhal, S., 2020, Synchronous role of coupled adsorption and photocatalytic oxidation on hybrid nanomaterials of pectin and nickel ferrite generating excellent removal efficiency for toxic dye effluents, New J. Chem., 44 (43), 18879–18891.

[105] Koutavarapu, R., Tamtam, M.R., Myla, C.R., Cho, M., and Shim, J., 2021, Enhanced solar-light-driven photocatalytic properties of novel Z-scheme binary BiPO4 nanorods anchored onto NiFe2O4 nanoplates: Efficient removal of toxic organic pollutants, J. Environ. Sci, 102, 326–340.

[106] Das, K.C., Dhar, S.S., Thakurata, D.G., and Das, J., 2021, Sn(II) inserted on hydroxyapatite encapsulated nickel ferrite (NiFe2O4@HAp-Sn2+): A novel nanocomposite for the effective photo-degradation of rhodamine B dye, J. Cleaner Prod., 290, 125172.

[107] Tamilselvi, R., Lekshmi, G.S., Padmanathan, N., Selvaraj, V., Bazaka, O., Levchenko, I., Bazaka, K., and Mandhakini, M., 2022, NiFe2O4/rGO nanocomposites produced by soft bubble assembly for energy storage and environmental remediation, Renewable Energy, 181, 1386–1401.

[108] Yan, X., Qian, J., Pei, X., Zhou, L., Ma, R., Zhang, M., Du, Y., and Bai, L., 2021, Enhanced photodegradation of doxycycline (DOX) in the sustainable NiFe2O4/MWCNTs/BiOI system under UV light irradiation, Environ. Res., 199, 111264.

[109] Veisi, P., Seyed Dorraji, M.S., Rasoulifard, M.H., Ghaffari, S., and Khobkar Choobar, A., 2021, Synergistic photocatalytic-adsorption removal effect of NiFe2O4-Zn-Al mixed metal oxide composite under visible-light irradiation, J. Photochem. Photobiol., A, 414, 113268.



DOI: https://doi.org/10.22146/ijc.90034

Article Metrics

Abstract views : 748 | views : 452


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.