A Review of Marine Bacterial Intracellular and Extracellular Bioactive Compounds as Novel Antibacterial and Anti-Inflammation Agents
Harningsih Karim(1), Arief Azis(2), Ananda Ramadani(3), Anita Anita(4), Ahyar Ahmad(5*), Hasnah Natsir(6), Paulina Taba(7), Suriati Eka Putri(8), Sarlan Sarlan(9), Siti Halimah Larekeng(10), Rizal Irfandi(11)
(1) Department of Pharmacy, School of Pharmacy YAMASI, Jl. Mapala 2 Blok D5 No. 10, Makassar 90222, Indonesia
(2) Department of Pharmacy, School of Pharmacy YAMASI, Jl. Mapala 2 Blok D5 No. 10, Makassar 90222, Indonesia
(3) Department of Pharmacy, School of Pharmacy YAMASI, Jl. Mapala 2 Blok D5 No. 10, Makassar 90222, Indonesia
(4) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Medical Laboratory Technology, Polytechnic Muhammadiyah Makassar, Jl. Dr. Ratulangi No. 101, Makassar 90132, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Research and Development Center for Biopolymers and Bioproducts, LPPM, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(8) Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, Jl. Daeng Tata, Makassar 90244, Indonesia
(9) Doctoral Program, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(10) Faculty of Forestry, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; Research Collaboration Center for KARST Microbes BRIN-LPPM, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia; 90039; KARST Bioprospecting and Society Research Group, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia
(11) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Jl. Daeng Tata, Makassar 90244, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Nehra, S., Gothwal, R.K., Varshney, A.K., Solanki, P.S., Chandra, S., Meena, P., Trivedi, P.C., and Ghosh, P., 2021, “Chapter 19 - Bio-Management of Fusarium spp. Associated with Fruit Crops” in Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology, Eds. Sharma, V.K., Shah, M.P., Parmar, S., and Kumar, A., Academic Press, Cambridge, MA, US, 475–505.
[2] Hutchings, M.I., Truman, A.W., and Wilkinson, B., 2019, Antibiotics: Past, present and future, Curr. Opin. Microbiol., 51, 72–80.
[3] Purssell, E., 2019, “Antimicrobials” in Understanding Pharmacology in Nursing Practice, Eds. Hood, P., and Khan, E., Springer International Publishing, Cham, Switzerland, 147–165.
[4] Doolin, T., Gross, S., and Siryaporn, A., 2020, “Physical Mechanisms of Bacterial Killing by Histones” in Physical Microbiology, Eds. Duménil, G., and van Teeffelen, S., Springer International Publishing, Cham, Switzerland, 117–133.
[5] Hasan, T.H., and Al-Harmoosh, R.A., 2020, Mechanisms of antibiotics resistance in bacteria, Syst. Rev. Pharm., 11 (6), 817–823.
[6] Gomes, C.F., Gomes, J.H., and da Silva, E.F., 2020, Bacteriostatic and bactericidal clays: An overview, Environ. Geochem. Health, 42 (11), 3507–3527.
[7] Brochot, A., Guilbot, A., Haddioui, L., and Roques, C., 2017, Antibacterial, antifungal, and antiviral effects of three essential oil blends, MicrobiologyOpen, 6 (4), e00459.
[8] Senerovic, L., Opsenica, D., Moric, I., Aleksic, I., Spasić, M., and Vasiljevic, B., 2020, “Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents” in Advances in Microbiology, Infectious Diseases and Public Health: Volume 14, Eds. Donelli, G., Springer International Publishing, Cham, Switzerland, 37–69.
[9] Atanasov, A.G., Zotchev, S.B., Dirsch, V.M., The International Natural Product Sciences Taskforce, and Supuran, C.T., 2021, Natural products in drug discovery: Advances and opportunities, Nat. Rev. Drug Discovery, 20 (3), 200–216.
[10] Young, R.J., Flitsch, S.L., Grigalunas, M., Leeson, P.D., Quinn, R.J., Turner, N.J., and Waldmann, H., 2022, The time and place for nature in drug discovery, JACS Au, 2 (11), 2400–2416.
[11] Hassan, A.Y., Lin, J.T., Ricker, N., and Anany, H., 2021, The age of phage: Friend or foe in the new dawn of therapeutic and biocontrol applications, Pharmaceuticals, 14 (3), 199.
[12] Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang, L., Huang, Y., Jia, J., and Dou, T., 2021, Antibiotic resistance genes in bacteria: Occurrence, spread, and control, J. Basic Microbiol., 61 (12), 1049–1070.
[13] Zhang, F., and Cheng, W., 2022, The mechanism of bacterial resistance and potential bacteriostatic strategies, Antibiotics, 11 (9), 1215.
[14] Turner, N.A., Sharma-Kuinkel, B.K., Maskarinec, S.A., Eichenberger, E.M., Shah, P.P., Carugati, M., Holland, T.L., and Fowler, V.G., 2019, Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research, Nat. Rev. Microbiol., 17 (4), 203–218.
[15] Munita, J.M., and Arias, C.A., 2016, “Mechanisms of Antibiotic Resistance” in Virulence Mechanisms of Bacterial Pathogens, Eds. Kudva, I.T., Cornick, N.A., Plummer, P.J., Zhang, Q., Nicholson, T.L., Bannantine, J.P., and Bellaire, B.H., ASM Press, Washington, DC, US, 481–511.
[16] Ribeiro da Cunha, B., Fonseca, L.P., and Calado, C.R.C., 2019, Antibiotic discovery: Where have we come from, where do we go?, Antibiotics, 8 (2), 45.
[17] Kannappan, A., Sivaranjani, M., Srinivasan, R., Rathna, J., Pandian, S.K., and Ravi, A.V., 2017, Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A, J. Med. Microbiol., 66 (10), 1506–1515.
[18] Li, Z., Zhang, L., Song, Q., Wang, G., Yang, W., Tang, H., Srinivasan, R., Lin, L., and Lin, X., 2021, Proteomics analysis reveals bacterial antibiotics resistance mechanism mediated by ahslyA against enoxacin in Aeromonas hydrophila, Front. Microbiol., 12, 699415.
[19] Srinivasan, R., Santhakumari, S., Poonguzhali, P., Geetha, M., Dyavaiah, M., and Xiangmin, L., 2021, Bacterial biofilm inhibition: A focused review on recent therapeutic strategies for combating the biofilm mediated infections, Front. Microbiol., 12 (5), 676458.
[20] Li, Z., Wang, Y., Li, X., Lin, Z., Lin, Y., Srinivasan, R., and Lin, X., 2019, The characteristics of antibiotic resistance and phenotypes in 29 outer-membrane protein mutant strains in Aeromonas hydrophila, Environ. Microbiol., 21 (12), 4614–4628.
[21] Podolsky, S.H., 2018, The evolving response to antibiotic resistance (1945–2018), Palgrave Commun., 4 (1), 124.
[22] Alexpandi, R., Prasanth, M.I., Ravi, A.V., Balamurugan, K., Durgadevi, R., Srinivasan, R., De Mesquita, J.F., and Pandian, S.T.K., 2019, Protective effect of neglected plant Diplocyclos palmatus on quorum sensing mediated infection of Serratia marcescens and UV-A induced photoaging in model Caenorhabditis elegans, J. Photochem. Photobiol., B, 201, 111637.
[23] World Health Organization, 2024, WHO Updates List of Drug-Resistant Bacteria Most Threatening to Human Health, https://www.who.int/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-most-threatening-to-human-health.
[24] De Oliveira, D.M.P., Forde, B.M., Kidd, T.J., Harris, P.N.A., Schembri, M.A., Beatson, S.A., Paterson, D.L., and Walker, M.J., 2020, Antimicrobial resistance in ESKAPE pathogens, Clin. Microbiol. Rev., 33 (3), e00181-19.
[25] O’Neill, J., 2016, Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, The Review on Antimicrobial Resistance, 1–84.
[26] Johnson, S.M., and Watson, J.R., 2021, Novel environmental conditions due to climate change in the world’s largest marine protected areas, One Earth, 4 (11), 1625–1634.
[27] Sunagawa, S., Acinas, S.G., Bork, P., Bowler, C., Acinas, S.G., Babin, M., Bork, P., Boss, E., Bowler, C., Cochrane, G., de Vargas, C., and Tara Oceans Coordinators, 2020, Tara Oceans: Towards global ocean ecosystems biology, Nat. Rev. Microbiol., 18 (8), 428–445.
[28] Choudhary, A., Naughton, L.M., Montánchez, I., Dobson, A.D.W., and Rai, D.K., 2017, Current status and future prospects of marine natural products (MNPs) as antimicrobials, Mar. Drugs, 15 (9), 272.
[29] Pham, J.V., Yilma, M.A., Feliz, A., Majid, M.T., Maffetone, N., Walker, J.R., Kim, E., Cho, H.J., Reynolds, J.M., Song, M.C., Park, S.R., and Yoon, Y.J., 2019, A review of the microbial production of bioactive natural products and biologics, Front. Microbiol., 10, 1404.
[30] Srinivasan, R., Kannappan, A., Shi, C., and Lin, X., 2021, Marine bacterial secondary metabolites: a treasure house for structurally unique and effective antimicrobial compounds, Mar. Drugs, 19 (10), 530.
[31] Jagannathan, S.V., Manemann, E.M., Rowe, S.E., Callender, M.C., and Soto, W., 2021, Marine actinomycetes, new sources of biotechnological products, Mar. Drugs, 19 (7), 365.
[32] Dang, N.P., Landfald, B., and Willassen, N.P., 2016, Biological surface-active compounds from marine bacteria, Environ. Technol., 37 (9), 1151–1158.
[33] Barzkar, N., Sukhikh, S., and Babich, O., 2024, Study of marine microorganism metabolites: New resources for bioactive natural products, Front. Microbiol., 14, 1285902.
[34] Stincone, P., and Brandelli, A., 2020, Marine bacteria as source of antimicrobial compounds, Crit. Rev. Biotechnol., 40 (3), 306–319.
[35] Tabarzad, M., Atabaki, V., and Hosseinabadi, T., 2020, Anti-inflammatory activity of bioactive compounds from microalgae and cyanobacteria by focusing on the mechanisms of action, Mol. Biol. Rep., 47 (8), 6193–6205.
[36] Núñez-Montero, K., and Barrientos, L., 2018, Advances in Antarctic research for antimicrobial discovery: A comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance, Antibiotics, 7 (4), 90.
[37] Quintero, M., Velásquez, A., Jutinico, L.M., Jiménez-Vergara, E., Blandón, L.M., Martinez, K., Lee, H.S., and Gómez-León, J., 2018, Bioprospecting from marine coastal sediments of Colombian Caribbean: Screening and study of antimicrobial activity, J. Appl. Microbiol., 125 (3), 753–765.
[38] Srilekha, V., Krishna, G., Seshasrinivas, V., and Charya, M.A.S., 2017, Antibacterial and anti-inflammatory activities of marine Brevibacterium sp., Res. Pharm. Sci., 12 (4), 283–289.
[39] Yasir, M., 2018, Analysis of bacterial communities and characterization of antimicrobial strains from cave microbiota, Braz. J. Microbiol., 49 (2), 248–257.
[40] Bosi, E., Fondi, M., Orlandini, V., Perrin, E., Maida, I., de Pascale, D., Tutino, M.L., Parrilli, E., Lo Giudice, A., Filloux, A., and Fani, R., 2017, The pangenome of (Antarctic) Pseudoalteromonas bacteria: Evolutionary and functional insights, BMC Genomics, 18 (1), 93.
[41] Offret, C., Desriac, F., Le Chevalier, P., Mounier, J., Jégou, C., and Fleury, Y., 2016, Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: Chemodiversity and ecological significance, Mar. Drugs, 14 (7), 1-26.
[42] Buijs, Y., Isbrandt, T., Zhang, S.D., Larsen, T.O., and Gram, L., 2020, The Antibiotic andrimid produced by Vibrio coralliilyticus increases expression of biosynthetic gene clusters and antibiotic production in Photobacterium galatheae, Front. Microbiol., 11, 622055.
[43] Karthikeyan, A., Joseph, A., and Nair, B.G., 2022, Promising bioactive compounds from the marine environment and their potential effects on various diseases, J. Genet. Eng. Biotechnol., 20 (1), 14.
[44] McCauley, E.P., Piña, I.C., Thompson, A.D., Bashir, K., Weinberg, M., Kurz, S.L., and Crews, P., 2020, Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates, J. Antibiot., 73 (8), 504–525.
[45] Kim, H., Kim, S., Kim, M., Lee, C., Yang, I., and Nam, S.J., 2020, Bioactive natural products from the genus Salinospora: A review, Arch. Pharmacal Res., 43 (12), 1230–1258.
[46] Anteneh, Y.S., Yang, Q., and Brown, M.H., 2021, Antimicrobial activities of marine sponge-associated bacteria, Microorganisms, 9 (1), 171.
[47] Kubicki, S., Bollinger, A., Katzke, N., Jaeger, K.E., Loeschcke, A., and Thies, S., 2019, Marine biosurfactants: Biosynthesis, structural diversity and biotechnological applications, Mar. Drugs, 17 (7), 408.
[48] Gudiña, E.J., Teixeira, J.A., and Rodrigues, L.R., 2016, Biosurfactants produced by marine microorganisms with therapeutic applications, Mar. Drugs, 14 (2), 38.
[49] Xiao, S., Chen, N., Chai, Z., Zhou, M., Xiao, C., Zhao, S., and Yang, X., 2022, Secondary metabolites from marine-derived Bacillus: A comprehensive review of origins, structures, and bioactivities, Mar. Drugs, 20 (9), 567.
[50] Hamidi, M., Kozani, P.S., Kozani, P.S., Pierre, G., Michaud, P., and Delattre, C., 2020, Marine bacteria versus microalgae: Who is the best for biotechnological production of bioactive compounds with antioxidant properties and other biological applications?, Mar. Drugs, 18 (1), 28.
[51] Khalifa, S.A.M., Shedid, E.S., Saied, E.M., Jassbi, A.R., Jamebozorgi, F.H., Rateb, M.E., Du, M., Abdel-Daim, M.M., Kai, G.Y., Al-Hammady, M.A.M., Xiao, J., Guo, Z., and El-Seedi, H.R., 2021, Cyanobacteria—From the oceans to the potential biotechnological and biomedical applications, Mar. Drugs, 19 (5), 241.
[52] Ponnappan, N., Budagavi, D.P., and Chugh, A., 2017, CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties, Biochim. Biophys. Acta, Biomembr., 1859 (2), 167–176.
[53] Costa, F., Teixeira, C., Gomes, P., and Martins, M.C.L., 2019, “Clinical Application of AMPs” in Antimicrobial Peptides: Basics for Clinical Application, Springer Singapore, Singapore, 281–298.
[54] Mahlapuu, M., Håkansson, J., Ringstad, L., and Björn, C., 2016, Antimicrobial peptides: An emerging category of therapeutic agents, Front. Cell. Infect. Microbiol., 6, 194.
[55] Ahmad, A., Asmi, N., Karim, H., Massi, M.N., Wahid, I., and Sugrani, A., 2020, Characterization of anti-dengue and cytotoxic activity of protein hydrolysates from the exophytic bacteria of brown algae Sargassum sp., J. Appl. Pharm. Sci., 11 (02), 039–045.
[56] Macedo, M.W.F.S., da Cunha, N.B., Carneiro, J.S.A., da Costa, R.A., de Alencar, S.A., Cardoso, M.H., Franco, O.L., and Dias, S.C., 2021, Marine organisms as a rich source of biologically active peptides, Front. Mar. Sci., 8, 667764.
[57] Asmi, N., Ahmad, A., Karim, H., Massi, M.N., Natsir, H., Karim, A., Taba, P., Dwyana, Z., and Ibrahim, M., 2020, Antibacterial effect of protein and protein hydrolysates isolated from bacteria Enterobacter hormaechei associated with marine algae Sargassum sp., Rasayan J. Chem., 13 (3), 1606–1611.
[58] Sugrani, A., Ahmad, A., Djide, M.N., and Natsir, H., 2020, Two novel antimicrobial and anti-cancer peptides prediction from Vibrio sp. strain ES25, J. Appl. Pharm. Sci., 10 (08), 058–066.
[59] Kalinovskaya, N.I., Romanenko, L.A., and Kalinovsky, A.I., 2017, Antibacterial low-molecular-weight compounds produced by the marine bacterium Rheinheimera japonica KMM 9513(T), Antonie van Leeuwenhoek, 110 (5), 719–726.
[60] Al-Rawahi, A.N., Abed, R.M.M., Rehman, N.U., Rafiq, K., Khan, A., Khan, A.L., Khan, M., Halim, S.A., Al-Senafi, F., Mahmoud, H., and Al-Harrasi, A., 2023, New sulfur-containing diketopiperazine from marine-derived bacteria Streptomyces rochei sp. 81 with potent carbonic anhydrase II inhibition, Chem. Nat. Compd., 59 (2), 346–350.
[61] Chakraborty, S., Tai, D.F., Lin, Y.C., and Chiou, T.W., 2016, Antitumor and antimicrobial activity of some cyclic tetrapeptides and tripeptides derived from marine bacteria, Mar. Drugs, 13 (5), 3029–3045.
[62] Dahiya, R., Kumar, S., Khokra, S.L., Gupta, S.V., Sutariya, V.B., Bhatia, D., Sharma, A., Singh, S., and Maharaj, S., 2018, Toward the synthesis and improved biopotential of an N-methylated analog of a proline-rich cyclic tetrapeptide from marine bacteria, Mar. Drugs, 16 (9), 305.
[63] Fazal, A., Webb, M.E., and Seipke, R.F., 2020, The desotamide family of antibiotics, Antibiotics, 9 (8), 452.
[64] Alves, E., Dias, M., Lopes, D., Almeida, A., Domingues, M.D., and Rey, F., 2020, Antimicrobial lipids from plants and marine organisms: An overview of the current state-of-the-art and future prospects, Antibiotics, 9 (8), 441.
[65] de Carvalho, C.C.C.R., and Caramujo, M.J., 2018, The various roles of fatty acids, Molecules, 23 (10), 2583.
[66] Alexandri, E., Ahmed, R., Siddiqui, H., Choudhary, M.I., Tsiafoulis, C.G., and Gerothanassis, I.P., 2017, High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution, Molecules, 22 (10), 1663.
[67] Fischer, C.L., 2020, Antimicrobial activity of host-derived lipids, Antibiotics, 9 (2), 75.
[68] Yoon, B.K., Jackman, J.A., Valle-González, E.R., and Cho, N.J., 2018, Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications, Int. J. Mol. Sci., 19 (4), 1114.
[69] Machado, M.G., Sencio, V., and Trottein, F., 2021, Short-chain fatty acids as a potential treatment for infections: a closer look at the lungs, Infect. Immun., 89 (9), e0018821.
[70] Eberlein, C., Baumgarten, T., Starke, S., and Heipieper, H.J., 2018, Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: Cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion, Appl. Microbiol. Biotechnol., 102 (6), 2583–2593.
[71] Rotter, A., Barbier, M., Bertoni, F., Bones, A.M., Cancela, M.L., Carlsson, J., Carvalho, M.F., Cegłowska, M., Chirivella-Martorell, J., Conk Dalay, M., Cueto, M., Dailianis, T., Deniz, I., Díaz-Marrero, A.R., Drakulovic, D., Dubnika, A., Edwards, C., Einarsson, H., Erdoǧan, A., Eroldoǧan, O.T., Ezra, D., Fazi, S., FitzGerald, R.J., Gargan, L.M., Gaudêncio, S.P., Gligora Udovič, M., Ivošević DeNardis, N., Jónsdóttir, R., Kataržytė, M., Klun, K., Kotta, J., Ktari, L., Ljubešić, Z., Lukić Bilela, L., Mandalakis, M., Massa-Gallucci, A., Matijošytė, I., Mazur-Marzec, H., Mehiri, M., Nielsen, S.L., Novoveská, L., Overlingė, D., Perale, G., Ramasamy, P., Rebours, C., Reinsch, T., Reyes, F., Rinkevich, B., Robbens, J., Röttinger, E., Rudovica, V., Sabotič, J., Safarik, I., Talve, S., Tasdemir, D., Theodotou Schneider, X., Thomas, O.P., Toruńska-Sitarz, A., Varese, G.C., and Vasquez, M.I., 2021, The essentials of marine biotechnology, Front. Mar. Sci., 8, 629629.
[72] Hussain, F., Rahman, F.I., Saha, P., Mikami, A., Osawa, T., Obika, S., and Abdur Rahman, S.M., 2022, Synthesis of sugar and nucleoside analogs and evaluation of their anti-cancer and analgesic potentials, Molecules, 27 (11), 3499.
[73] Yates, M.K., and Seley-Radtke, K.L., 2019, The evolution of anti-viral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold, Antiviral Res., 162, 5–21.
[74] Mani, P., Dineshkumar, G., Jayaseelan, T., Deepalakshmi, K., Ganesh Kumar, C., and Senthil Balan, S., 2016, Antimicrobial activities of a promising glycolipid biosurfactant from a novel marine Staphylococcus saprophyticus SBPS 15, 3 Biotech, 6 (2), 163.
[75] Wei, T., Zhao, C., Quareshy, M., Wu, N., Huang, S., Zhao, Y., Yang, P., Mao, D., and Chen, Y., 2021, A glycolipid glycosyltransferase with broad substrate specificity from the marine bacterium “Candidatus; Pelagibacter sp.” strain HTCC7211, Appl. Environ. Microbiol., 87 (14), e00326-21.
[76] Jenssen, M., Kristoffersen, V., Motiram-Corral, K., Isaksson, J., Rämä, T., Andersen, J.H., Hansen, E.H., and Hansen, K.Ø., 2021, Chlovalicin B, a chlorinated sesquiterpene isolated from the marine mushroom Digitatispora marina, Molecules, 26 (24), 7560.
[77] Aksoy, S.Ç., Uzel, A., and Bedir, E., 2016, Cytosine-type nucleosides from marine-derived Streptomyces rochei 06CM016, J. Antibiot., 69 (1), 51–56.
[78] Zhang, M., Zhang, P., Xu, G., Zhou, W., Gao, Y., Gong, R., Cai, Y.S., Cong, H., Deng, Z., Price, N.P.J., Mao, X., and Chen, W., 2020, Comparative investigation into formycin A and pyrazofurin A biosynthesis reveals branch pathways for the construction of C-Nucleoside scaffolds, Appl. Environ. Microbiol., 86 (2), e01971-19.
[79] Xu, G., Kong, L., Gong, R., Xu, L., Gao, Y., Jiang, M., Cai, Y.S., Hong, K., Hu, Y., Liu, P., Deng, Z., Price, N.P.J., and Chen, W., 2018, Coordinated biosynthesis of the purine nucleoside antibiotics aristeromycin and coformycin in actinomycetes, Appl. Environ. Microbiol., 84 (22), e01860-18.
[80] Kamala, K., and Sivaperumal, P., 2017, Biomedical applications of enzymes from marine actinobacteria, Adv. Food Nutr. Res., 80, 107–123.
[81] Izadpanah Qeshmi, F., Homaei, A., Fernandes, P., and Javadpour, S., 2018, Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry, Microbiol. Res., 208, 99–112.
[82] Bunpa, S., Sermwittayawong, N., and Vuddhakul, V., 2016, Extracellular enzymes produced by Vibrio alginolyticus isolated from environments and diseased aquatic animals, Procedia Chem., 18, 12–17.
[83] Gaudêncio, S.P., Bayram, E., Lukić Bilela, L., Cueto, M., Díaz-Marrero, A.R., Haznedaroglu, B.Z., Jimenez, C., Mandalakis, M., Pereira, F., Reyes, F., and Tasdemir, D., 2023, Advanced methods for natural products discovery: Bioactivity screening, dereplication, metabolomics profiling, genomic sequencing, databases and informatic tools, and structure elucidation, Mar. Drugs, 21 (5), 308.
[84] Almeida, M.C., Resende, D.I.S.P., da Costa, P.M., Pinto, M.M.M., and Sousa, E., 2021, Tryptophan derived natural marine alkaloids and synthetic derivatives as promising antimicrobial agents, Eur. J. Med. Chem., 209, 112945.
[85] Lu, W.Y., Li, H.J., Li, Q.Y., and Wu, Y.C., 2021, Application of marine natural products in drug research, Bioorg. Med. Chem., 35, 116058.
[86] Kemung, H.M., Tan, L.T.H., Khan, T.M., Chan, K.G., Pusparajah, P., Goh, B.H., and Lee, L.H., 2018, Streptomyces as a prominent resource of future anti-MRSA drugs, Front. Microbiol., 9, 2221.
[87] Xie, C.L., Xia, J.M., Su, R.Q., Li, J., Liu, Y., Yang, X.W., and Yang, Q., 2018, Bacilsubteramide A, a new indole alkaloid, from the deep-sea-derived Bacillus subterraneus 11593, Nat. Prod. Res., 32 (21), 2553–2557.
[88] Newaz, A.W., Yong, K., Lian, X.Y., and Zhang, Z., 2022, Streptoindoles A–D, novel antimicrobial indole alkaloids from the marine-associated actinomycete Streptomyces sp. ZZ1118, Tetrahedron, 104, 132598.
[89] Anjum, K., Kaleem, S., Yi, W., Zheng, G., Lian, X., and Zhang, Z., 2019, Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275, Mar. Drugs, 17 (2), 89.
[90] Thabit, A.K., Crandon, J.L., and Nicolau, D.P., 2015, Antimicrobial resistance: Impact on clinical and economic outcomes and the need for new antimicrobials, Expert Opin. Pharmacother., 16 (2), 159–177.
[91] Uddin, T.M., Chakraborty, A.J., Khusro, A., Zidan, B.M.R.M., Mitra, S., Bin Emran, T., Dhama, K., Ripon, M.K.H., Gajdács, M., Sahibzada, M.U.K., Hossain, M.J., and Koirala, N., 2021, Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects, J. Infect. Public Health, 14 (12), 1750–1766.
[92] Huang, C., Yang, C., Zhu, Y., Zhang, W., Yuan, C., and Zhang, C., 2018, Marine bacterial aromatic polyketides from host-dependent heterologous expression and fungal mode of cyclization, Front. Chem., 6, 528.
[93] Liang, Y., Xie, X., Chen, L., Yan, S., Ye, X., Anjum, K., Huang, H., Lian, X., and Zhang, Z., 2016, Bioactive polycyclic quinones from marine Streptomyces sp. 182SMLY, Mar. Drugs, 14 (1), 10.
[94] Liang, Y., Chen, L., Ye, X., Anjum, K., Lian, X.Y., and Zhang, Z., 2017, New streptophenazines from marine Streptomyces sp. 182SMLY, Nat. Prod. Res., 31 (4), 411–417.
[95] Zhang, X., Ye, X., Chai, W., Lian, X.Y., and Zhang, Z., 2016, New metabolites and bioactive actinomycins from marine-derived Streptomyces sp. ZZ338, Mar. Drugs, 14 (10), 181.
[96] Francis, A., and Chakraborty, K., 2021, Marine macroalga-associated heterotroph Bacillus velezensis as prospective therapeutic agent, Arch. Microbiol., 203 (4), 1671–1682.
[97] Chakraborty, K., Kizhakkekalam, V.K., and Joy, M., 2022, Polyketide-derived macrobrevins from marine macroalga-associated Bacillus amyloliquefaciens as promising antibacterial agents against pathogens causing nosocomial infections, Phytochemistry, 193, 112983.
[98] Subramani, R., and Sipkema, D., 2019, Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products, Mar. Drugs, 17 (5), 249.
[99] Gozari, M., Alborz, M., El-Seedi, H.R., and Jassbi, A.R., 2021, Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats, Eur. J. Med. Chem., 210, 112957.
[100] Núñez-Pons, L., Shilling, A., Verde, C., Baker, B.J., and Giordano, D., 2020, Marine terpenoids from polar latitudes and their potential applications in biotechnology, Mar. Drugs, 18 (8), 401.
[101] Pereira, F., Almeida, J.R., Paulino, M., Grilo, I.R., Macedo, H., Cunha, I., Sobral, R.G., Vasconcelos, V., and Gaudêncio, S.P., 2020, Antifouling napyradiomycins from marine-derived actinomycetes Streptomyces aculeolatus, Mar. Drugs, 18 (1), 63.
[102] Jiang, Y.C., Feng, H., Lin, Y.C., and Guo, X.R., 2016, New strategies against drug resistance to herpes simplex virus, Int. J. Oral Sci., 8 (1), 1–6.
[103] Velmurugan, P., Venil, C.K., Veera Ravi, A., and Dufossé, L., 2020, Marine bacteria is the cell factory to produce bioactive pigments: A prospective pigment source in the ocean, Front. Sustainable Food Syst., 4, 589655.
[104] Podilapu, A.R., Emmadi, M., and Kulkarni, S.S., 2018, Expeditious synthesis of ieodoglucomides A and B from the marine-derived bacterium Bacillus licheniformis, Eur. J. Org. Chem., 2018 (24), 3230–3235.
[105] Shu, W.S., and Huang, L.N., 2022, Microbial diversity in extreme environments, Nat. Rev. Microbiol., 20 (4), 219–235.
[106] Chinnathambi, A., Salmen, S.H., Al-Garadi, M.A., Wainwright, M., and Ali Alharbi, S., 2023, Marine actinomycetes: An endless source of potentially therapeutic novel secondary metabolites and other bioactive compounds, J. King Saud Univ., Sci., 35 (9), 102931.
[107] Mba, I.E., and Nweze, E.I., 2022, Antimicrobial Peptides therapy: An emerging alternative for treating drug-resistant bacteria, Yale J. Biol. Med., 95 (4), 445–463.
[108] Zha, X., Ji, R., and Zhou, S., 2024, Marine bacteria: A source of novel bioactive natural products, Curr. Med. Chem., 31 (41), 6842–6854.
[109] Ameen, F., AlNadhari, S., and Al-Homaidan, A.A., 2021, Marine microorganisms as an untapped source of bioactive compounds, Saudi J. Biol. Sci., 28 (1), 224–231.
[110] Wang, P., Huang, X., Jiang, C., Yang, R., Wu, J., Liu, Y., Feng, S., and Wang, T., 2024, Antibacterial properties of natural products from marine fungi reported between 2012 and 2023: A review, Arch. Pharmacal Res., 47 (6), 505–537.
[111] Sarkar, P., Yarlagadda, V., Ghosh, C., and Haldar, J., 2017, A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics, MedChemComm, 8 (3), 516–533.
[112] Navarro, P.P., Vettiger, A., Ananda, V.Y., Llopis, P.M., Allolio, C., Bernhardt, T.G., and Chao, L.H., 2022, Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli, Nat. Microbiol., 7 (10), 1621–1634.
[113] Liu, Y., Shi, J., Tong, Z., Jia, Y., Yang, K., and Wang, Z., 2020, Potent broad-spectrum antibacterial activity of amphiphilic peptides against multidrug-resistant bacteria, Microorganisms, 8 (9), 1398.
[114] Varela, M.F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L.M., Hernandez, A.J., Parvathi, A., and Kumar, S.H., 2021, Bacterial resistance to antimicrobial agents, Antibiotics, 10 (5), 593.
[115] Zhang, Q.Y., Yan, Z.B., Meng, Y.M., Hong, X.Y., Shao, G., Ma, J.J., Cheng, X.R., Liu, J., Kang, J., and Fu, C.Y., 2021, Antimicrobial peptides: Mechanism of action, activity and clinical potential, Mil. Med. Res., 8 (1), 48.
[116] Lin, T.Y., and Weibel, D.B., 2016, Organization and function of anionic phospholipids in bacteria, Appl. Microbiol. Biotechnol., 100 (10), 4255–4267.
[117] Dörr, T., Moynihan, P.J., and Mayer, C., 2019, Editorial: Bacterial cell wall structure and dynamics, Front. Microbiol., 10, 2051.
[118] Fivenson, E.M., Rohs, P.D.A., Vettiger, A., Sardis, M.F., Torres, G., Forchoh, A., and Bernhardt, T.G., 2023, A role for the Gram-negative outer membrane in bacterial shape determination, Proc. Natl. Acad. Sci. U. S. A., 120 (35), e2301987120.
[119] Zgurskaya, H.I., and Rybenkov, V.V., 2020, Permeability barriers of Gram-negative pathogens, Ann. N. Y. Acad. Sci., 1459 (1), 5–18.
[120] Borisova, M., Gaupp, R., Duckworth, A., Schneider, A., Dalügge, D., Mühleck, M., Deubel, D., Unsleber, S., Yu, W., Muth, G., Bischoff, M., Götz, F., and Mayer, C., 2016, Peptidoglycan recycling in Gram-positive bacteria is crucial for survival in stationary phase, MBio, 7 (5), e00923-16.
[121] Sun, J., Rutherford, S.T., Silhavy, T.J., and Huang, K.C., 2022, Physical properties of the bacterial outer membrane, Nat. Rev. Microbiol., 20 (4), 236–248.
[122] Sperandeo, P., Martorana, A.M., and Polissi, A., 2017, Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 1862 (11), 1451–1460.
[123] Tavares, T.D., Antunes, J.C., Padrão, J., Ribeiro, A.I., Zille, A., Amorim, M.T.P., Ferreira, F., and Felgueiras, H.P., 2020, Activity of specialized biomolecules against Gram-positive and Gram-negative bacteria, Antibiotics, 9 (6), 314.
[124] Kloska, A., Cech, G.M., Sadowska, M., Krause, K., Szalewska-Pałasz, A., and Olszewski, P., 2020, Adaptation of the marine bacterium Shewanella baltica to low temperature stress, Int. J. Mol. Sci., 21 (12), 4338.
[125] Miller, S.I., and Salama, N.R., 2018, The Gram-negative bacterial periplasm: Size matters, PLoS Biol., 16 (1), e2004935.
[126] Gefen, O., Chekol, B., Strahilevitz, J., and Balaban, N.Q., 2017, TD test: Easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay, Sci. Rep., 7 (1), 41284.
[127] Rütten, A., Kirchner, T., and Musiol-Kroll, E.M., 2022, Overview on strategies and assays for antibiotic discovery, Pharmaceuticals, 15 (10), 1302.
[128] Weinstein, M.P., and Lewis, J.S., 2020, The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes, J. Clin. Microbiol., 58 (3), e01864-19.
[129] Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., and Capita, R., 2021, Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes, Biology, 11 (1), 46.
[130] Balouiri, M., Sadiki, M., and Ibnsouda, S.K., 2016, Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal., 6 (2), 71–79.
[131] Hudson, M.A., and Lockless, S.W., 2022, Elucidating the mechanisms of action of antimicrobial agents, MBio, 13 (3), e02240-21.
[132] Patil, K.R., Mahajan, U.B., Unger, B.S., Goyal, S.N., Belemkar, S., Surana, S.J., Ojha, S., and Patil, C.R., 2019, Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals, Int. J. Mol. Sci., 20 (18), 4367.
[133] Elbandy, M., 2022, Anti-inflammatory effects of marine bioactive compounds and their potential as functional food ingredients in the prevention and treatment of neuroinflammatory disorders, Molecules, 28 (1), 2.
[134] Petersen, L.E., Kellermann, M.Y., and Schupp, P.J., 2020, “Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology” in YOUMARES 9 - The Oceans: Our Research, Our Future: Proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany, Springer International Publishing, Cham, Switzerland, 159–180.
[135] Florean, C., Dicato, M., and Diederich, M., 2022, Immune-modulating and anti-inflammatory marine compounds against cancer, Semin. Cancer Biol., 80, 58–72.
[136] Parolini, C., 2024, The role of marine n-3 polyunsaturated fatty acids in inflammatory-based disease: The case of rheumatoid arthritis, Mar. Drugs, 22 (1), 17.
[137] Baral, P., Udit, S., and Chiu, I.M., 2019, Pain and immunity: Implications for host defence, Nat. Rev. Immunol., 19 (7), 433–447.
[138] Zhang, S., Chen, Y., Zhu, J., Lu, Q., Cryle, M.J., Zhang, Y., and Yan, F., 2023, Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces, Nat. Prod. Rep., 40 (3), 557–594.
[139] Karim, N., Khan, I., Khan, W., Khan, I., Khan, A., Halim, S.A., Khan, H., Hussain, J., and Al-Harrasi, A., 2019, Anti-nociceptive and anti-inflammatory activities of asparacosin A involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: An in-vitro, in-vivo, and in-silico approach, Front. Immunol., 10, 581.
[140] Menzel, A., Samouda, H., Dohet, F., Loap, S., Ellulu, M.S., and Bohn, T., 2021, Common and novel markers for measuring inflammation and oxidative stress ex vivo in research and clinical practice-which to use regarding disease outcomes, Antioxidants, 10 (3), 414.
[141] Li, H., Huang, H., Hou, L., Ju, J., and Li, W., 2017, Discovery of Antimycin-type depsipeptides from a wbl gene mutant strain of deepsea-derived Streptomyces somaliensis SCSIO ZH66 and their effects on pro-inflammatory cytokine production, Front. Microbiol., 8, 678.
[142] Alvariño, R., Alonso, E., Lacret, R., Oves-Costales, D., Genilloud, O., Reyes, F., Alfonso, A., and Botana, L.M., 2019, Caniferolide A, a macrolide from Streptomyces caniferus, attenuates neuroinflammation, oxidative stress, amyloid-beta, and tau pathology in vitro, Mol. Pharmaceutics, 16 (4), 1456–1466.
[143] Mascuch, S.J., Boudreau, P.D., Carland, T.M., Pierce, N.T., Olson, J., Hensler, M.E., Choi, H., Campanale, J., Hamdoun, A., Nizet, V., Gerwick, W.H., Gaasterland, T., and Gerwick, L., 2018, Marine natural product honaucin A attenuates inflammation by activating the Nrf2-ARE pathway, J. Nat. Prod., 81 (3), 506–514.
[144] Kazmaier, U., and Junk, L., 2021, Recent developments on the synthesis and bioactivity of ilamycins/rufomycins and cyclomarins, marine cyclopeptides that demonstrate anti-malaria and anti-tuberculosis activity, Mar. Drugs, 19 (8), 446.
[145] Kumar, P.S., 2021, “Chapter One - Introduction to Marine Biology” in Modern Treatment Strategies for Marine Pollution, Elsevier, Cambridge, MA, US, 1–10.
[146] Overmann, J., and Lepleux, C., 2016, “Marine Bacteria and Archaea: Diversity, Adaptations, and Culturability” in The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential, Eds. Stal, L.J., and Cretoiu, M.S., Springer International Publishing, Cham, Switzerland, 21–55.
[147] Johnson, L.A., and Hug, L.A., 2019, Distribution of reactive oxygen species defense mechanisms across domain bacteria, Free Radical Biol. Med., 140, 93–102.
[148] Joseph, A., 2017, “Chapter 9 - Oceans: Abode of Nutraceuticals, Pharmaceuticals, and Biotoxins” in Investigating Seafloors and Oceans, Elsevier, Cambridge, MA, US, 493–554.
[149] Wiese, J., and Imhoff, J.F., 2019, Marine bacteria and fungi as promising source for new antibiotics, Drug Dev. Res., 80 (1), 24–27.
[150] Cardoso, J., Nakayama, D.G., Sousa, E., and Pinto, E., 2020, Marine-derived compounds and prospects for their antifungal application, Molecules, 25 (24), 5856.
[151] Chinemerem N.D., Ugwu, M.C., Oliseloke A.C., Al-Ouqaili, M.T.S., Chinedu I.J., Victor C.U., and Saki, M., 2022, Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace, J. Clin. Lab. Anal., 36 (9), e24655.
[152] Ahmed, S.K., Hussein, S., Qurbani, K., Ibrahim, R.H., Fareeq, A., Mahmood, K.A., and Mohamed, G.M., 2024, Antimicrobial resistance: Impacts, challenges, and future prospects, J. Med., Surg., Public Health, 2, 100081.
DOI: https://doi.org/10.22146/ijc.90039
Article Metrics
Abstract views : 266 | views : 252Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.