Photodegradation of Phenol under Visible Light Irradiation Using Cu-N-codoped ZrTiO4 Composite as a High-Performance Photocatalyst

https://doi.org/10.22146/ijc.90365

Wanda Putra Fauzi(1), Rian Kurniawan(2), Sri Sudiono(3), Niko Prasetyo(4), Akhmad Syoufian(5*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, Leipzig 04103, Germany
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Codoping of nitrogen and copper into zirconium titanate composite (Cu-N-codoped ZrTiO4) was carried out through a sol-gel process. This study aimed to investigate the effect of copper and nitrogen dopants on the photocatalytic activity of ZrTiO4 composite in degrading phenol. To prepare the composite, an aqueous suspension of zirconia (ZrO2) alongside a fixed amount of urea and various amount of copper sulfate was added dropwise into diluted titanium(IV) tetraisopropoxide (TTIP) in ethanol. The composites were calcined at temperatures of 500, 700, and 900 °C. Fourier-transform infrared spectrophotometry (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) mapping, and specular reflectance UV-visible spectrophotometry (SR UV-vis) were used for their characterization of composite. The photocatalytic activity was evaluated by adding the composite into a 10 mg L−1 phenol solution for various irradiation time spans. The remaining concentration of phenol solution was determined by absorption at 269 nm. Cu-N-codoped ZrTiO4 composite containing 5% Cu calcined at 500 °C demonstrated the highest observed rate constant and a significant band gap decrease from 3.13 to 2.68 eV.

Keywords


band gap; Cu-N-codoped ZrTiO4; degradation; phenol

Full Text:

Full Text PDF


References

[1] Crini, G., and Lichtfouse, E., 2019, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (1), 145–155.

[2] Gadipelly, C., Pérez-González, A., Yadav, G.D., Ortiz, I., Ibáñez, R., Rathod, V.K., and Marathe, K.V., 2014, Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse, Ind. Eng. Chem. Res., 53 (29), 11571–11592.

[3] Naguib, D.M., and Badawy, N.M., 2020, Phenol removal from wastewater using waste products, J. Environ. Chem. Eng., 8 (1), 103592.

[4] Villegas, L.G.C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., and Biswas, N., 2016, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2 (3), 157–167.

[5] Dehmani, Y., Mobarak, M., Oukhrib, R., Dehbi, A., Mohsine, A., Lamhasni, T., Tahri, Y., Ahlafi, H., Abouarnadasse, S., Lima, E.C., and Badawi, M., 2023, Adsorption of phenol by a Moroccan clay/hematite composite: Experimental studies and statistical physical modeling, J. Mol. Liq., 386, 122508.

[6] Khleifat, K., Magharbeh, M., Alqaraleh, M., Al-Sarayrah, M., Alfarrayeh, I., Al Qaisi, Y., Alsarayreh, A., and Al-kafaween, M.A., 2022, Biodegradation modeling of phenol using Curtobacterium flaccumfaciens as plant-growth-promoting bacteria, Heliyon, 8 (9), e10490.

[7] Sacco, O., Vaiano, V., Daniel, C., Navarra, W., and Venditto, V., 2018, Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels, Mater. Sci. Semicond. Process., 80, 104–110.

[8] Bharali, D., Saikia, S., Devi, R., Choudary, B.M., Gour, N.K., and Deka, R.C., 2023, Photocatalytic degradation of phenol and its derivatives over ZnFe layered double hydroxide, J. Photochem. Photobiol., A, 438, 114509.

[9] Qi, K., Wang, Z., Xie, X., and Wang, Z., 2023, Photocatalytic performance of pyrochar and hydrochar in heterojunction photocatalyst for organic pollutants degradation: Activity comparison and mechanism insight, Chem. Eng. J., 467, 143424.

[10] Ur Rehman, G., Tahir, M., Goh, P.S., Ismail, A.F., Hafeez, A., and Khan, I.U., 2021, Enhancing the photodegradation of phenol using Fe3O4/SiO2 binary nanocomposite mediated by silane agent, J. Phys. Chem. Solids, 153, 110022.

[11] Viet, N.M., Mai Huong, N.T., and Thu Hoai, P.T., 2023, Enhanced photocatalytic decomposition of phenol in wastewater by using La–TiO2 nanocomposite, Chemosphere, 313, 137605.

[12] Quirk, J.A., Lazarov, V.K., and McKenna, K.P., 2020, First-principles modeling of oxygen-deficient anatase TiO2 nanoparticles, J. Phys. Chem. C, 124 (43), 23637–23647.

[13] Hu, Y., Tsai, H.L., and Huang, C.L., 2003, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles, J. Eur. Ceram. Soc., 23 (5), 691–696.

[14] Zhang, J., Zhou, P., Liu, J., and Yu, J., 2014, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16 (38), 20382–20386.

[15] Reddy, C.V., Babu, B., Reddy, I.N., and Shim, J., 2018, Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity, Ceram. Int., 44 (6), 6940–6948.

[16] Arjun, A., Dharr, A., Raguram, T., and Rajni, K.S., 2020, Study of copper doped zirconium dioxide nanoparticles synthesized via sol–gel technique for photocatalytic applications, J. Inorg. Organomet. Polym. Mater., 30 (12), 4989–4998.

[17] Bandara, W.R.L.N., de Silva, R.M., de Silva, K.M.N., Dahanayake, D., Gunasekara, S., and Thanabalasingam, K., 2017, Is nano ZrO2 a better photocatalyst than nano TiO2 for degradation of plastics?, RSC Adv., 7 (73), 46155–46163.

[18] Verma, S., Rani, S., Kumar, S., and Khan, M.A.M., 2018, Rietveld refinement, micro-structural, optical and thermal parameters of zirconium titanate composites, Ceram. Int., 44 (2), 1653–1661.

[19] Kim, J.Y., Kim, C.S., Chang, H.K., and Kim, T.O., 2011, Synthesis and characterization of N-doped TiO2/ZrO2 visible light photocatalysts, Adv. Powder Technol., 22 (3), 443–448.

[20] Bashirom, N., Tan, W.K., Kawamura, G., Matsuda, A., and Lockman, Z., 2022, Formation of self-organized ZrO2–TiO2 and ZrTiO4–TiO2 nanotube arrays by anodization of Ti–40Zr foil for Cr(VI) removal, J. Mater. Res. Technol., 19, 2991–3003.

[21] Kurniawan, R., Sudiono, S., Trisunaryanti, W., and Syoufian, A., 2019, Synthesis of iron-doped zirconium titanate as a potential visible-light responsive photocatalyst, Indones. J. Chem., 19 (2), 454–460.

[22] Muslim, M.I., Kurniawan, R., Pradipta, M.F., Trisunaryanti, W., and Syoufian, A., 2021, The effects of manganese dopant content and calcination temperature on properties of titania-zirconia composite, Indones. J. Chem., 21 (4), 882–890.

[23] Alifi, A., Kurniawan, R., and Syoufian, A., 2020, Zinc-doped titania embedded on the surface of zirconia: A potential visible-responsive photocatalyst material, Indones. J. Chem., 20 (6), 1374–1381.

[24] Hayati, R., Kurniawan, R., Prasetyo, N., Sudiono, S., and Syoufian, A., 2022, Codoping effect of nitrogen (N) to iron (Fe) doped zirconium titanate (ZrTiO4) composite toward its visible light responsiveness as photocatalysts, Indones. J. Chem., 22 (3), 692–702.

[25] Wang, J., Zhao, Y.F., Wang, T., Li, H., and Li, C., 2015, Photonic, and photocatalytic behavior of TiO2 mediated by Fe, CO, Ni, N doping and co-doping, Phys. B, 478, 6–11.

[26] Lin, H., and Shih, C., 2016, Efficient one-pot microwave-assisted hydrothermal synthesis of M (M=Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting, J. Mol. Catal. A: Chem., 411, 128–137.

[27] Doong, R., and Liao, C.Y., 2017, Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method, J. Hazard. Mater., 322, 254–262.

[28] Fan, X., Lin, L., and Messersmith, P.B., 2006, Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer–matrix nanocomposites, Compos. Sci. Technol., 66 (9), 1198–1204.

[29] Rahmawati, L., Kurniawan, R., Prasetyo, N., Sudiono, S., and Syoufian, A., 2023, Copper-and-nitrogen-codoped zirconium titanate (Cu-N-ZrTiO4) as a photocatalyst for photo-degradation of methylene blue under visible-light irradiation, Indones. J. Chem., 23 (2), 416–424.

[30] Albornoz Marin, S.L., de Oliveira, S.C., and Peralta-Zamora, P., 2022, Photocatalytic degradation of phenol by core–shell Cu@TiO2 nanostructures under visible radiation, J. Photochem. Photobiol., A, 433, 114129.

[31] Kambur, A., Pozan, G.S., and Boz, I., 2012, Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles, Appl. Catal., B, 115-116, 149–158.

[32] Fu, C.C., Juang, R.S., Huq, M.M., and Hsieh, C.T., 2016, Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts, J. Taiwan Inst. Chem. Eng., 67, 338–345.

[33] Fazal, T., Razzaq, A., Javed, F., Hafeez, A., Rashid, N., Amjad, U.S., Ur Rehman, M.S., Faisal, A., and Rehman, F., 2020, Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite, J. Hazard. Mater., 390, 121623.

[34] Arora, P., Fermah, A., Rajput, J.K., Singh, H., and Badhan, J., 2017, Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles, Environ. Sci. Pollut. Res., 24 (24), 19546–19560.

[35] Zhu, X., Li, B., Yang, J., Li, Y., Zhao, W., Shi, J., and Gu, J., 2015, Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67, ACS Appl. Mater. Interfaces, 7 (1), 223–231.

[36] Reda, S.M., Khairy, M., and Mousa, M.A., 2020, Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process, Arabian J. Chem., 13 (1), 86–95.

[37] Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., and Doerr, S.H., 2013, FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition, Catena, 108, 35–43.

[38] Farhadian Azizi, K., and Bagheri-Mohagheghi, M.M., 2013, Transition from anatase to rutile phase in titanium dioxide (TiO2) nanoparticles synthesized by complexing sol–gel process: Effect of kind of complexing agent and calcinating temperature, J. Sol-Gel Sci. Technol., 65 (3), 329–335.

[39] Sulaikhah, E.F., Kurniawan, R., Pradipta, M.F., Trisunaryanti, W., and Syoufian, A., 2020, Cobalt doping on zirconium titanate as a potential photocatalyst with visible-light-response, Indones. J. Chem., 20 (4), 911–918.

[40] Shao, G.N., Imran, S.M., Jeon, S.J., Engole, M., Abbas, N., Salman Haider, M., Kang, S.J., and Kim, H.T., 2014, Sol–gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue, Powder Technol., 258, 99–109.

[41] Wang, S., Yang, X.J., Jiang, Q., and Lian, J.S., 2014, Enhanced optical absorption and photocatalytic activity of Cu/N-codoped TiO2 nanocrystals, Mater. Sci. Semicond. Process., 24, 247–253.

[42] Singha, K., Ghosh, S.C., and Panda, A.B., 2021, Visible light-driven efficient synthesis of amides from alcohols using Cu−N−TiO2 heterogeneous photocatalyst, Eur. J. Org. Chem., 2021 (4), 657–662.

[43] Suwannaruang, T., Hildebrand, J.P., Taffa, D.H., Wark, M., Kamonsuangkasem, K., Chirawatkul, P., and Wantala, K., 2020, Visible light-induced degradation of antibiotic ciprofloxacin over Fe–N–TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture, J. Photochem. Photobiol., A, 391, 112371.

[44] Velardi, L., Scrimieri, L., Serra, A., Manno, D., and Calcagnile, L., 2020, Effect of temperature on the physical, optical and photocatalytic properties of TiO2 nanoparticles, SN. Appl. Sci., 2 (4), 707.

[45] Zhang, Q., and Li, C., 2020, High temperature stable anatase phase titanium dioxide films synthesized by mist chemical vapor deposition, Nanomaterials, 10 (5), 911.

[46] Kogler, M., Köck, E.M., Vanicek, S., Schmidmair, D., Götsch, T., Stöger-Pollach, M., Hejny, C., Klötzer, B., and Penner, S., 2014, Enhanced kinetic stability of pure and Y-doped tetragonal ZrO2, Inorg. Chem., 53 (24), 13247–13257.

[47] Xie, S., Iglesia, E., and Bell, A.T., 2000, Water-assisted tetragonal-to-monoclinic phase transformation of ZrO2 at low temperatures, Chem. Mater., 12 (8), 2442–2447.

[48] Kim, H.T., Han, J.S., Yang, J.H., Lee, J.B., and Kim, S.H., 2009, The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics, J. Adv. Prosthodont., 1 (3), 113–117.

[49] Sarkar, N., Park, J.G., Mazumder, S., Aneziris, C.G., and Kim, I.J., 2015, Processing of particle stabilized Al2TiO5–ZrTiO4 foam to porous ceramics, J. Eur. Ceram. Soc., 35 (14), 3969–3976.

[50] Xia, Y., Mou, J., Deng, G., Wan, S., Tieu, K., Zhu, H., and Xue, Q., 2020, Sintered ZrO2–TiO2 ceramic composite and its mechanical appraisal, Ceram. Int., 46 (1), 775–785.

[51] Chang, S.M., and Doong, R., 2006, Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures, J. Phys. Chem. B, 110 (42), 20808–20814.

[52] Colón, G., Maicu, M., Hidalgo, M.C., and Navío, J.A., 2006, Cu-doped TiO2 systems with improved photocatalytic activity, Appl. Catal., B, 67 (1-2), 41–51.

[53] Tryba, B., Orlikowski, J., Wróbel, R.J., Przepiórski, J., and Morawski, A.W., 2015, Preparation and characterization of rutile-type TiO2 doped with Cu, J. Mater. Eng. Perform., 24 (3), 1243–1252.

[54] Tzompantzi, F., Castillo-Rodríguez, J.C., Tzompantzi-Flores, C., Pérez-Hernández, R., Gómez, R., Santolalla-Vargas, C.E., Che-Galicia, G., and Ramos-Ramírez, E., 2022, Addition of SnO2 over an oxygen deficient zirconium oxide (ZrxOy) and its catalytic evaluation for the photodegradation of phenol in water, Catal. Today, 394–396, 376–389.

[55] Feng, C., Chen, Z., Jing, J., and Hou, J., 2020, The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods, J. Mater. Chem. C, 8 (9), 3000–3009.

[56] Bhattacharyya, K., Mane, G.P., Rane, V., Tripathi, A.K., and Tyagi, A.K., 2021, Selective CO2 photoreduction with Cu-doped TiO2 photocatalyst: Delineating the crucial role of Cu-oxidation state and oxygen vacancies, J. Phys. Chem. C, 125 (3), 1793–1810.



DOI: https://doi.org/10.22146/ijc.90365

Article Metrics

Abstract views : 1786 | views : 613


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.