Preparation of Au-Doped Two-Phase TiO2 Nanoparticles by One-Step Method as Photocatalytic Applications

Rasha Jameel Neama(1*), Firas Kamel Mohamad Alosfur(2), Khawla Jemeal Tahir(3), Noor Jawad Ridha(4), Luma Majeed Ahmed(5)

(1) Department of Physics, College of Science, University of Kerbala, Kerbala 56001, Iraq
(2) Department of Physics, College of Science, University of Kerbala, Kerbala 56001, Iraq
(3) Department of Physics, College of Science, University of Kerbala, Kerbala 56001, Iraq
(4) Department of Physics, College of Science, University of Kerbala, Kerbala 56001, Iraq
(5) Department of Chemistry, College of Science, University of Kerbala, Kerbala 56001, Iraq
(*) Corresponding Author


The synthesis of pure TiO2 and X% Au/TiO2 NPs was achieved via a sol-gel technique. The influence of Au concentration on structural, morphological, and optical features, as well as photocatalytic activity, was studied. XRD analysis revealed the presence of crystallized titanium consisting of anatase and rutile phases. The surface composition and electronic structure of TiO2 and X% Au/TiO2 catalysts were investigated using XPS analysis. Au/TiO2 consists of Ti 2p, O 1s, and Au 4f regions from XPS analysis. FESEM and TEM were utilized to analyze the morphology of the samples. FTIR spectrum indicated the presence of OH, CH2, and Ti–O–Ti groups in TiO2 samples, with an additional peak at 2108.89 cm−1 indicating the presence of gold in X% Au/TiO2 samples. The specific surface area increased from 33.36 m2/g for pure TiO2 to 51.62 m2/g after the doping of 2.5% Au NPs. The incorporation of Au on the TiO2 surface significantly influenced the optical properties in the 490 to 590 nm region, observed through the UV-vis absorption spectrum. The 2% Au/TiO2 NPs exhibited higher catalytic activity than pure TiO2, degrading methylene blue dye by 72.43% within 120 min.


Au; methylene blue; photocatalysis; sol-gel; TiO2; XPS

Full Text:

Full Text PDF


[1] Khan, I., Khan, I., Usman, M., Imran, M., and Saeed, K., 2020, Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation, J. Mater. Sci.: Mater. Electron., 31 (11), 8971–8985.

[2] Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., Khatoon, A., Wani, W.A., Kumar, R., and Rafatullah, M., 2015, Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater, RSC Adv., 5 (39), 30801–30818.

[3] Alencar, L.V.T.D., Passos, L.M.S., Soares, C.M.F., Lima, A.S., and Souza, R.L., 2020, Efficiency method for methylene blue recovery using aqueous two-phase systems based on cholinium-ionic liquids, Curr. Trends Fashion Technol. Text. Eng., 6 (1), 13–20.

[4] Pandey, S., Do, J.Y., Kim, J., and Kang, M., 2020, Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum-based hydrogels as adsorbent, Int. J. Biol. Macromol., 143, 60–75.

[5] Derakhshan, Z., Baghapour, M.A., Ranjbar, M., and Faramarzian, M., 2013, Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies, J. Health Scope, 2 (3), 136–144.

[6] Fong, W.M., Affam, A.C., and Chung, W.C., 2020, Synthesis of Ag/Fe/CAC for colour and COD removal from methylene blue dye wastewater, Int. J. Environ. Sci. Technol., 17 (7), 3485–3494.

[7] Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D.O., and Prasetyoko, D., 2020, Review on recent advances of carbon-based adsorbent for methylene blue removal from wastewater, Mater. Today Chem., 16, 100233.

[8] Zamel, D., and Khan, A.U., 2021, Bacterial immobilization on cellulose acetate-based nanofibers for methylene blue removal from wastewater: Mini-review, Inorg. Chem. Commun., 131, 108766.

[9] Gan, J., Megonnell, N.E., and Yates, S.R., 2001, Adsorption and catalytic decomposition of methyl bromide and methyl iodide on activated carbons, Atmos. Environ., 35 (5), 941–947.

[10] Raizada, P., Sudhaik, A., Patial, S., Hasija, V., Parwaz Khan, A.A., Singh, P., Gautam, S., Kaur, M., and Nguyen, V.H., 2020, Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges, Arabian J. Chem., 13 (11), 8424–8457.

[11] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W., 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114 (19), 9919–9986.

[12] Qi, K., Cheng, B., Yu, J., and Ho, W., 2017, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727, 792–820.

[13] Taufique, M.F.N., Haque, A., Karnati, P., and Ghosh, K., 2018, ZnO–CuO nanocomposites with improved photocatalytic activity for environmental and energy applications, J. Electron. Mater., 47 (11), 6731–6745.

[14] Kunarti, E.S., Kartini, I., Syoufian, A., and Widyandari, K.M., 2018, Synthesis and photoactivity of Fe3O4/TiO2-Co as a magnetically separable visible light responsive photocatalyst, Indones. J. Chem., 18 (3), 403–410.

[15] Manurung, P., Situmeang, R., Ginting, E., and Pardede, I., 2015, Synthesis and characterization of titania-rice husk silica composites as photocatalyst, Indones. J. Chem., 15 (1), 36–42.

[16] Luo, Z., Poyraz, A.S., Kuo, C.H., Miao, R., Meng, Y., Chen, S.Y., Jiang, T., Wenos, C., and Suib, S.L., 2015, Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity, Chem. Mater., 27 (1), 6–17.

[17] Khairy, M., and Zakaria, W., 2014, Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes, Egypt. J. Pet., 23 (4), 419–426.

[18] Valero-Romero, M.J., Santaclara, J.G., Oar-Arteta, L., van Koppen, L., Osadchii, D.Y., Gascon, J., and Kapteijn, F., 2019, Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis, Chem. Eng. J., 360, 75–88.

[19] Song, K., Han, X., and Shao, G., 2013, Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study, J. Alloys Compd., 551, 118–124.

[20] Zhang, J., Fu, D., Wang, S., Hao, R., and Xie, Y., 2019, Photocatalytic removal of chromium (VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: Feasibility, mechanism and kinetics, J. Ind. Eng. Chem., 80, 23–32.

[21] Widiyandari, H., Nashir, M., Parasdila, H., Almas, K.F., and Suryana, R., 2023, Ag-TiO2 for efficient methylene blue photodegradation under visible light irradiation, Bull. Chem. React. Eng. Catal., 18 (4), 593–603.

[22] Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Reddy, K.R., Raghu, A.V., and Reddy, C.V., 2020, Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, Int. J. Hydrogen Energy, 45 (13), 7764–7778.

[23] Di Valentin, C., and Pacchioni, G., 2013, Trends in non-metal doping of anatase TiO2: B, C, N and F, Catal. Today, 206, 12–18.

[24] Sultana, M., Mondal, A., Islam, S., Khatun, M.A., Rahman, M.H., Chakraborty, A.K., Rahman, M.S., Rahman, M.M., and Nur, A.S.M., 2023, Strategic development of metal doped TiO2 photocatalysts for enhanced dye degradation activity under UV–vis irradiation: A review, Curr. Res. Green Sustainable Chem., 7, 100383.

[25] Tsukamoto, D., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., and Hirai, T., 2012, Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation, J. Am. Chem. Soc., 134 (14), 6309–6315.

[26] Priebe, J.B., Radnik, J., Lennox, A.J.J., Pohl, M.M., Karnahl, M., Hollmann, D., Grabow, K., Bentrup, U., Junge, H., Beller, M., and Brückner, A., 2015, Solar hydrogen production by plasmonic Au–TiO2 catalysts: Impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates, ACS Catal., 5 (4), 2137–2148.

[27] Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., and Thurnauer, M.C., 2003, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B, 107 (19), 4545–4549.

[28] Bumajdad, A., Madkour, M., Abdel-Moneam, Y., and El-Kemary, M., 2014, Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: The effect of size similarity of the deposited Au with that of TiO2 pores, J. Mater. Sci., 49 (4), 1743–1754.

[29] Veziroglu, S., Obermann, A.L., Ullrich, M., Hussain, M., Kamp, M., Kienle, L., Leißner, T., Rubahn, H.G., Polonskyi, O., Strunskus, T., Fiutowski, J., Es-Souni, M., Adam, J., Faupel, F., and Aktas, O.C., 2020, Photodeposition of Au nanoclusters for enhanced photocatalytic dye degradation over TiO2 thin film, ACS Appl. Mater. Interfaces, 12 (13), 14983–14992.

[30] Oja Acik, I., Oyekoya, N.G., Mere, A., Loot, A., Dolgov, L., Mikli, V., Krunks, M., and Sildos, I., 2015, Plasmonic TiO2: Au composite layers deposited in situ by chemical spray pyrolysis, Surf. Coat. Technol., 271, 27–31.

[31] Rodríguez-Martínez, C., García-Domínguez, Á.E., Guerrero-Robles, F., Saavedra-Díaz, R.O., Torres-Torres, G., Felipe, C., Ojeda-López, R., Silahua-Pavón, A., and Cervantes-Uribe, A., 2020, Synthesis of supported metal nanoparticles (Au/TiO2) by the suspension impregnation method, J. Compos. Sci., 4 (3), 89.

[32] van Deelen, T.W., Hernández Mejía, C., and de Jong, K.P., 2019, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity, Nat. Catal., 2 (11), 955–970.

[33] Du, M., Huang, J., Sun, D., Wang, D., and Li, Q., 2018, High catalytic stability for CO oxidation over Au/TiO2 catalysts by Cinnamomum camphora leaf extract, Ind. Eng. Chem. Res., 57 (44), 14910–14914.

[34] Yu, J., Yue, L., Liu, S., Huang, B., and Zhang, X., 2009, Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres, J. Colloid Interface Sci., 334 (1), 58–64.

[35] Patel, S.K.S., Jena, P., and Gajbhiye, N.S., 2019, Structural and room-temperature ferromagnetic properties of pure and Ni-doped TiO2 nanotubes, Mater. Today: Proc., 15, 388–393.

[36] Mustapha, S., Tijani, J.O., Ndamitso, M.M., Abdulkareem, A.S., Shuaib, D.T., Amigun, A.T., and Abubakar, H.L., 2021, Facile synthesis and characterization of TiO2 nanoparticles: X-ray peak profile analysis using Williamson–Hall and Debye–Scherrer methods, Int. Nano Lett., 11 (3), 241–261.

[37] Nkele, A.C., Chime, U.K., Asogwa, L., Nwanya, A.C., Nwankwo, U., Ukoba, K., Jen, T.C., Maaza, M., and Ezema, F.I., 2020, A study on titanium dioxide nanoparticles synthesized from titanium isopropoxide under SILAR-induced gel method: Transition from anatase to rutile structure, Inorg. Chem. Commun., 112, 107705.

[38] Ibrahim, N.S., Leaw, W.L., Mohamad, D., Alias, S.H., and Nur, H., 2020, A critical review of metal-doped TiO2 and its structure–physical properties–photocatalytic activity relationship in hydrogen production, Int. J. Hydrogen Energy, 45 (53), 28553–28565.

[39] Loan, T.T., Huong, V.H., Huyen, N.T., Van Quyet, L., Bang, N.A., and Long, N.N., 2021, Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content, Opt. Mater., 111, 110651.

[40] Kim, M.G., Kang, J.M., Lee, J.E., Kim, K.S., Kim, K.H., Cho, M., and Lee, S.G., 2021, Effects of calcination temperature on the phase composition, photocatalytic degradation, and virucidal activities of TiO2 nanoparticles, ACS Omega, 6 (16), 10668–10678.

[41] Almashhori, K., Ali, T.T., Saeed, A., Alwafi, R., Aly, M., and Al-Hazmi, F.E., 2020, Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed phase TiO2 nanophotocatalysts synthesized via a microwave-assisted sol–gel method, New J. Chem., 44 (2), 562–570.

[42] Aji, B.B., Shih, S.J., and Pradita, T., 2017, Controlled crystal phase of TiO2 by spray pyrolysis method, J. Phys.: Conf. Ser., 817 (1), 012021.

[43] Grey, L.H., Nie, H.Y., and Biesinger, M.C., 2024, Defining the nature of adventitious carbon and improving its merit as a charge correction reference for XPS, Appl. Surf. Sci., 653, 159319.

[44] Chi, M., Sun, X., Lozano-Blanco, G., and Tatarchuk, B.J., 2021, XPS and FTIR investigations of the transient photocatalytic decomposition of surface carbon contaminants from anatase TiO2 in UHV starved water/oxygen environments, Appl. Surf. Sci., 570, 151147.

[45] Zhang, W., Li, G., Liu, H., Chen, J., Ma, S., Wen, M., Kong, J., and An, T., 2020, Photocatalytic degradation mechanism of gaseous styrene over Au/TiO2@CNTs: Relevance of superficial state with deactivation mechanism, Appl. Catal., B, 272, 118969.

[46] Liu, T., Chen, W., Huang, T., Duan, G., Yang, X., and Liu, X., 2016, Titania-on-gold nanoarchitectures for visible-light-driven hydrogen evolution from water splitting, J. Mater. Sci., 51 (14), 6987–6997.

[47] Waheed, A., Shi, Q., Maeda, N., Meier, D.M., Qin, Z., Li, G., and Baiker, A., 2020, Strong activity enhancement of the photocatalytic degradation of an azo dye on Au/TiO2 doped with FeOx, Catalysts, 10 (8), 933.

[48] Zhang, K., Lu, G., Chu, F., and Huang, X., 2021, Au/TiO2 nanobelts: Thermal enhancement vs. plasmon enhancement for visible-light-driven photocatalytic selective oxidation of amines into imines, Catal. Sci. Technol., 11 (21), 7060–7071.

[49] Nasikhudin, N., Diantoro, M., Kusumaatmaja, A., and Triyana, K., 2018, Study on photocatalytic properties of TiO2 nanoparticle in various pH condition, J. Phys.: Conf. Ser., 1011 (1), 012069.

[50] Gogoi, D., Namdeo, A., Golder, A.K., and Peela, N.R., 2020, Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting, Int. J. Hydrogen Energy, 45 (4), 2729–2744.

[51] Din, M.I., Khalid, R., Najeeb, J., and Hussain, Z., 2021, Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies-A critical review, J. Cleaner Prod., 298, 126567.

[52] Somwanshi, S.B., Somvanshi, S.B., and Kharat, P.B., 2020, Visible light driven photocatalytic activity of TiO2 nanoparticles prepared via gel-combustion process, J. Phys.: Conf. Ser., 1644 (1), 012042.

[53] Toncón-Leal, C.F., Villarroel-Rocha, J., Silva, M.T.P., Braga, T.P., and Sapag, K., 2021, Characterization of mesoporous region by the scanning of the hysteresis loop in adsorption–desorption isotherms, Adsorption, 27 (7), 1109–1122.

[54] Zhang, M., Xu, W., Ma, C.L., Yu, J., Liu, Y.T., and Ding, B., 2022, Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers, ACS Nano, 16 (3), 4186–4196.

[55] Farooq, M.U., Zhang, X., Guan, Y., Chen, W., Zhou, J., Zhang, J., Qian, G., Duan, X., Zhou, X., and Yuan, W., 2023, Synergistic electronic and geometric effects of Au/CeO2 catalyst for oxidative esterification of methacrolein, AIChE J., 69 (1), e17932.

[56] Shooshtari, M., Salehi, A., and Vollebregt, S., 2021, Effect of temperature and humidity on the sensing performance of TiO2 nanowire-based ethanol vapor sensors, Nanotechnology, 32 (32), 325501.

[57] Hong, T., Yin, J.Y., Nie, S.P., and Xie, M.Y., 2021, Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective, Food Chem.: X, 12, 100168.

[58] Boccuzzi, F., Chiorino, A., and Manzoli, M., 2002, Au/TiO2 nanostructured catalyst: Pressure and temperature effects on the FTIR spectra of CO adsorbed at 90 K, Surf. Sci., 502-503, 513–518.

[59] Manzoli, M., Chiorino, A., Vindigni, F., and Boccuzzi, F., 2012, Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: A FTIR study, Catal. Today, 181 (1), 62–67.

[60] Dorranian, D., Solati, E., and Dejam, L., 2012, Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water, Appl. Phys. A, 109 (2), 307–314.

[61] Qutub, N., Singh, P., Sabir, S., Sagadevan, S., and Oh, W.C., 2022, Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite, Sci. Rep., 12 (1), 5759.

[62] Fathy, M., Hamad, H., and Kashyout, A.H., 2016, Influence of calcination temperatures on the formation of anatase TiO2 nano rods with a polyol-mediated solvothermal method, RSC Adv., 6 (9), 7310–7316.

[63] Huseynov, E.M., and Huseynova, E.A., 2023. Infrared spectroscopy of nanocrystalline anatase (TiO2) particles under the neutron irradiation, Opt. Mater., 144, 114351.

[64] Khorasaninejad, M., Chen, W.T., Zhu, A.Y., Oh, J., Devlin, R.C., Roques-Carmes, C., Mishra, I., and Capasso, F., 2016, Visible wavelength planar metalenses based on titanium dioxide, IEEE J. Sel. Top. Quantum Electron., 23 (3), 4700216.

[65] Saha, S., Victorious, A., and Soleymani, L., 2021, Modulating the photoelectrochemical response of titanium dioxide (TiO2) photoelectrodes using gold (Au) nanoparticles excited at different wavelengths, Electrochim. Acta, 380, 138154.

[66] Rao, K.G., Ashok, C., Rao, K.V., Chakra, C.S., and Rajendar, V., 2014, Green synthesis of TiO2 nanoparticles using hibiscus flower extract, Proceedings of the International Conference on Emerging Technologies in Mechanical Sciences, Telangana, India, December 26–27.

[67] Subramanian, A., Pan, Z., Li, H., Zhou, L., Li, W., Qiu, Y., Xu, Y., Hou, Y., Muzi, C., and Zhang, Y., 2017, Synergistic promotion of photoelectrochemical water splitting efficiency of TiO2 nanorods using metal-semiconducting nanoparticles, Appl. Surf. Sci., 420, 631–637.

[68] Khan, M.M., Ansari, S.A., Lee, J., and Cho, M.H., 2013, Enhanced optical, visible light catalytic and electrochemical properties of Au@TiO2 nanocomposites, J. Ind. Eng. Chem., 19 (6), 1845–1850.

[69] Kumar, A., and Pandey, G., 2017, The photocatalytic degradation of methyl green in presence of visible light with photoactive Ni0.10:La0.05:TiO2 nanocomposites, IOSR J. Appl. Chem., 10 (9), 31–44.

[70] Akpan, U.G., and Hameed, B.H., 2009, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater., 170 (2-3), 520–529.

[71] Xiao, J.D., Han, L., Luo, J., Yu, S.H., and Jiang, H.L., 2018, Integration of plasmonic effects and Schottky junctions into metal–organic framework composites: steering charge flow for enhanced visible‐light photocatalysis, Angew. Chem., Int. Ed., 57 (4),1103–1107.

[72] Wang, Y.G., Cantu, D.C., Lee, M.S., Li, J., Glezakou, V.A., and Rousseau, R., 2016, CO oxidation on Au/TiO2: Condition-dependent active sites and mechanistic pathways, J. Am. Chem. Soc., 138 (33), 10467–10476.

[73] Wen, Y., Liu, B., Zeng, W., and Wang, Y., 2013, Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes, Nanoscale, 5 (20), 9739–9746.

[74] Dong, S., Tebbutt, G.T., Millar, R., Grobert, N., and Maciejewska, B.M., 2023, Hierarchical porosity design enables highly recyclable and efficient Au/TiO2 composite fibers for photodegradation of organic pollutants, Mater. Des., 234, 112318.

[75] Chen, Y., Bian, J., Qi, L., Liu, E., and Fan, J., 2015, Efficient degradation of methylene blue over two-dimensional Au/TiO2 nanosheet films with overlapped light harvesting nanostructures, J. Nanomater., 2015, 905259.

[76] Jansanthea, P., and Chomkitichai, W., 2019, Enhanced photocatalytic degradation of methylene blue by using Au-TiO2, Appl. Mech. Mater., 886, 107–113.

[77] Rimal Isaac, R.S., Ashima, B., and Praseetha, P.K., 2014, Sonophotocatalytic degradation of methylene blue using synthesized M@TiO2 nanocomposites (M= Ag, Pd, Au, Pt), Arab J. Phys. Chem., 2 (4), 90–96

[78] Arias, M.C., Aguilar, C., Piza, M., Zarazua, E., Anguebes, F., and Cordova, V., 2021. Removal of the methylene blue dye (MB) with catalysts of Au-TiO2: Kinetic and degradation pathway, Mod. Res. Catal., 10 (1), 1–14.


Article Metrics

Abstract views : 348 | views : 109

Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.