The Improvement of Modified Rice Straw Fiber/Polyvinyl Alcohol Thermoplastic Polymer Composite Using Cold Plasma Technology
Harianingsih Harianingsih(1*), Ari Nur Dwi Indriawan(2), Rizki Setiadi(3), Indra Sakti Pangestu(4), Isnina Noor Ubay(5), Savira Rinda Erliana(6)
(1) Department of Chemical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia
(2) Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia
(3) Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia
(4) Department of Chemical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia
(5) Department of Chemical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia
(6) Department of Chemical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia
(*) Corresponding Author
Abstract
The use of natural rice straw as a filler for composite materials has not been optimally utilized; only around 7–16% of the grain is used in the industry. Various developments have been carried out, including its use as a filler or reinforcement for wood polymer composite products, but it is not effective because of poor interfacial adhesion. An alternative to increase the effectiveness of straw fibers in wood composites is by using cold plasma (atmospheric) treatment. In this research, composites consisting of straw fiber and biodegradable polyvinyl alcohol (PVA) matrix were made with and without cold plasma injection treatment. PVA is used because of its hydrophilic nature and function as a matrix. This research aims to determine the effect of cold plasma injection on straw fiber/PVA composites. The method used consists of preparation of straw fiber and composites, flexural testing with time variations of 10, 20, and 30 sec, morphological analysis using SEM to determine surface roughness, and FTIR test. The results showed that treatment with and without plasma provided significant differences in roughness. Plasma causes roughness to increase, thereby increasing the adhesion of the interface to the matrix.
Keywords
Full Text:
Full Text PDFReferences
[1] Alonso-Montemayor, F.J., Navarro-Rodríguez, D., Delgado-Aguilar, M., Neira-Velázquez, M.G., Aguilar, C.N., Castañeda-Facio, A.O., Reyes-Acosta, Y.K., and Narro-Cespedes, R.I., 2022, Plasma-treated lignocellulosic fibers for polymer reinforcement: A review, Cellulose, 29 (2), 659–683.
[2] Chen, W., Xu, Y., Shi, S., Cao, Y., Chen, M., and Zhou, X., 2018, Fast modification on wheat straw outer surface by water vapor plasma and its application on composite material, Sci. Rep., 8 (1), 2279.
[3] Macedo, M.J.P., Silva, G.S., Feitor, M.C., Costa, T.H.C., Ito, E.N., and Melo, J.D.D., 2020, Surface modification of kapok fibers by cold plasma surface treatment, J. Mater. Res. Technol., 9 (2), 2467–2476.
[4] Al-Tayyar, N.A., Youssef, A.M., and Al-Hindi, R.R., 2020, Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review, Sustainable Mater.Technol., 26, e00215.
[5] Bahrami, R., Zibaei, R., Hashami, Z., Hasanvand, S., Garavand, F., Rouhi, M., Jafari, S.M., and Mohammadi, R., 2022, Modification and improvement of biodegradable packaging films by cold plasma: A critical review, Crit. Rev. Food Sci. Nutr., 62 (7), 1936–1950.
[6] Borrelle, S.B., Ringma, J., Law, K.L., Monnahan, C.C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G.H., Hilleary, M.A., Eriksen, M., Possingham, H.P., De Frond, H., Gerber, L.R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., and Rochman, C.M., 2020, Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution, Science, 369 (6510), 1515–1518.
[7] Fajri, M., Susilastri, S., and Fakhruzy, F., 2023, Perbandingan karakteristik pulp dan paper dari tiga bahan eceng gondok (Eichhornia crassipes), jerami padi (Oryza sativa), mensiang (Actinoscirpus grossus), Sumatera Trop. For. Res. J., 7 (2), 236–243.
[8] Singh, H.K., Patil, T., Vineeth, S.K., Das, S., Pramanik, A., and Mhaske, S.T., 2020, Isolation of microcrystalline cellulose from corn stover with emphasis on its constituents: Corn cover and corn cob, Mater. Today: Proc., 27, 589–594.
[9] Das, D., Panesar, P.S., Saini, C.S., and Kennedy, J.F., 2022, Improvement in properties of edible film through non-thermal treatments and nanocomposite materials: A review, Food Packag. Shelf Life, 32, 100843.
[10] Gupta, R.K., Guha, P., and Srivastav, P.P., 2022, Natural polymers in bio-degradable/edible film: A review on environmental concerns, cold plasma technology and nanotechnology application on food packaging-A recent trends, Food Chem. Adv., 1, 100135.
[11] Iqbal, M.W., Riaz, T., Yasmin, I., Leghari, A.A., Amin, S., Bilal, M., and Qi, X., 2021, Chitosan‐based materials as edible coating of cheese: A review, Starch‐Stärke, 73 (11-12), 2100088.
[12] Maharsih, I.K., Pusfitasari, M.D., Putri, C.A.S., and Hidayat, M.T., 2021, Performance evaluation of cassava peels starch-based edible coating incorporated with chitosan on the shelf-life of fresh-cut pineapples (Ananas comosus), IOP Conf. Ser.: Earth Environ. Sci., 733 (1), 012017.
[13] Ridenti, M.A., Reis, J., Caliari, F., Miranda, F., Essiptchouk, A., and Filho, G.P., 2024, Temperature measurement by optical emission spectroscopy of the plasma jet produced by a high velocity plasma spray (HVPS), IEEE Trans. Plasma Sci., 52 (1). 67–76.
[14] Kantharaju, S., Vinodhini, J., Govindaraju, M., and Bhowmik, S., 2023, An investigation to enhance the mechanical property of high‐performance thermoplastic composite through different plasma treatment, Polym. Compos., 44 (1), 178–189.
[15] Gillet, C., Hassoune-Rhabbour, B., Poncin-Epaillard, F., Tchalla, T., and Nassiet, V., 2022, Contributions of atmospheric plasma treatment on a hygrothermal aged carbon/epoxy 3D woven composite material, Polym. Degrad. Stab., 202, 110023.
[16] ASTM D790-17, 1997, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA, US.
[17] Ojeda, G.A., Arias Gorman, A.M., Sgroppo, S.C., and Zaritzky, N.E., 2021, Application of composite cassava starch/chitosan edible coating to extend the shelf life of black mulberries, J. Food Process. Preserv., 45 (1), e15073.
[18] Bal, B.C., 2023, Some mechanical properties of WPCs with wood flour and walnut shell flour, Polímeros, 33, e20230020.
[19] Hertzberg, R.W., Vinci, R.P., and Hertzberg, J.L., 2020, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York, USA.
[20] Gholamiyan, H., Ashouri, J., Ahmadi, P., and Hosseinpourpia, R., 2022, Surface wettability and coating performance of plasma-treated wood-based composite panels, Coatings, 12 (12), 1894.
[21] Sawangrat, C., Thipchai, P., Kaewapai, K., Jantanasakulwong, K., Suhr, J., Wattanachai, P., and Rachtanapun, P., 2023, Surface modification and mechanical properties improvement of bamboo fibers using dielectric barrier discharge plasma treatment, Polymers, 15 (7), 1711.
[22] Silva, O.A., Pellá, M.C.G., Friedrich, J.C.C., Pellá, M.G., Beneton, A.G., Faria, M.G.I., Colauto, G.A.L., Caetano, J., Simões, M.R., and Dragunski, D.C., 2021, Effects of a native cassava starch, chitosan, and gelatin-based edible coating over guavas (Psidium guajava L.), ACS Food Sci. Technol., 1 (7), 1247–1253.
[23] Suhag, R., Kumar, N., Petkoska, A.T., and Upadhyay, A., 2020, Film formation and deposition methods of edible coating on food products: A review, Food Res. Int., 136, 109582.
[24] Sun, X., Wang, J., Dong, M., Zhang, H., Li, L., and Wang, L., 2022, Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend, Trends Food Sci. Technol., 119, 122–132.
[25] Miebach, L., Freund, E., Clemen, R., Weltmann, K.D., Metelmann, H.R., von Woedtke, T., Gerling, T., Wende, K., and Bekeschus, S., 2022, Conductivity augments ROS and RNS delivery and tumor toxicity of an argon plasma jet, Free Radical Biol. Med., 180, 210–219.
[26] Lin, L., and Keidar, M., 2021, A map of control for cold atmospheric plasma jets: From physical mechanisms to optimizations, Appl. Phys. Rev., 8 (1), 011306.
[27] Levchenko, I., Xu, S., Baranov, O., Bazaka, O., Ivanova, E.P., and Bazaka, K., 2021, Plasma and polymers: Recent progress and trends, Molecules, 26 (13), 4091.
[28] Friedrich, D., 2021, Thermoplastic moulding of wood-polymer composites (WPC): A review on physical and mechanical behaviour under hot-pressing technique, Compos. Struct., 262, 113649.
[29] Zhou, H., Li, W., Hao, X., Zong, G., Yi, X., Xu, J., Ou, R., and Wang, Q., 2022, Recycling end-of-life WPC products into ultra-high-filled, high-performance wood fiber/polyethylene composites: A sustainable strategy for clean and cyclic processing in the WPC industry, J. Mater. Res. Technol., 18, 1–14.
[30] Friedrich, D., 2022, Success factors of wood-plastic composites (WPC) as sustainable packaging material: A cross-sector expert study, Sustainable Prod. Consumption, 30, 506-517.
DOI: https://doi.org/10.22146/ijc.93255
Article Metrics
Abstract views : 1112 | views : 393Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.