Electrocoagulation in Wastewater from Spent-Batteries Recycling

https://doi.org/10.22146/ijc.93262

Fika Rofiek Mufakhir(1*), Chusnul Khotimah(2), Soesaptri Oediyani(3), Widi Astuti(4), Slamet Sumardi(5), Hendra Prasetia(6), La Ode Arham(7), Hafid Zul Hakim(8), Himawan Tri Bayu Murti Petrus(9), Venny Poernomo(10)

(1) Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami Km. 15 Tanjung Bintang, Lampung Selatan 35361, Indonesia; Department Mining Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Jati Agung, Lampung Selatan 35365, Indonesia
(2) Department Metallurgy Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jenderal Sudirman Km. 3, Kotabumi, Purwakarta, Kota Cilegon, Banten 42435, Indonesia
(3) Department Metallurgy Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jenderal Sudirman Km. 3, Kotabumi, Purwakarta, Kota Cilegon, Banten 42435, Indonesia
(4) Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami Km. 15 Tanjung Bintang, Lampung Selatan 35361, Indonesia
(5) Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami Km. 15 Tanjung Bintang, Lampung Selatan 35361, Indonesia
(6) Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami Km. 15 Tanjung Bintang, Lampung Selatan 35361, Indonesia
(7) Department Mining Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Jati Agung, Lampung Selatan 35365, Indonesia
(8) Department Mining Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Jati Agung, Lampung Selatan 35365, Indonesia
(9) Sustainable Mineral Processing Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(10) PT. Limas Primenergi Lestari, Raya Bangsalsari, Trisnogambar, Jember 68154, Indonesia
(*) Corresponding Author

Abstract


This study uses electrocoagulation to investigate reducing heavy metal content in wastewater from discharging spent batteries. ICP-OES analysis shows that heavy metals exceed the environmental water standard. The electrocoagulation procedure was conducted within a reactor with a 500 mL volume and a rectifier with a 5 A current capacity. Three types of electrode material combinations were used: iron (Fe) and aluminium (Al) as well as Fe-Fe, Al-Al, and Fe-Al pairs with 1 cm in the distance by parallel monopolar cells. Alternating current was used with 30, 40, and 50 A/m2 current density. The best result shown in the Fe-Al electrode pair combination system at 40 A/m2 for 30 min contact time and removal efficiencies for Co, Cd, Ni, Zn, and As is 98.76, 90.73, 99.32, 97.93, and 97.78%, respectively, while for Hg it is 31.84%, even though only Cd is above the standard limit. The heavy metal bearing was confirmed using SEM-EDS in the floc and the precipitate residue. The dissolved electrode materials and electrical energy consumed are 0.32 g and 0.109 kWh/m3, respectively. This method can be a good alternative for treating wastewater compared to direct current electrocoagulation, where the electrode and energy will be less consumed.


Keywords


alternating current; electrocoagulation; heavy metal; spent-batteries recycling; wastewater

Full Text:

Full Text PDF


References

[1] International Energy Agency, 2023, Global EV Outlook 2023: Catching up with climate ambitions, OECD Publishing, Paris.

[2] Meilanova, D.R., 2021, IBC Targetkan Produksi Baterai hingga 140 GWh pada 2030, https://ekonomi.bisnis.com/read/20210326/44/1373074/ibc-targetkan-produksi-baterai-hingga-140-gwh-pada-2030, accessed on March 13, 2024.

[3] Randau, S., Weber, D.A., Kötz, O., Koerver, R., Braun, P., Weber, A., Ivers-Tiffée, E., Adermann, T., Kulisch, J., Zeier, W.G., Richter, F.H., and Janek, J., 2020, Benchmarking the performance of all-solid-state lithium batteries, Nat. Energy, 5 (3), 259–270.

[4] Cheng, X.B., Liu, H., Yuan, H., Peng, H.J., Tang, C., Huang, J.Q., and Zhang, Q., 2021, A perspective on sustainable energy materials for lithium batteries, SusMat, 1 (1), 38–50.

[5] Cheng, Z., Liu, T., Zhao, B., Shen, F., Jin, H., and Han, X., 2021, Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries, Energy Storage Mater., 34, 388–416.

[6] European Commission, Joint Research Centre, Ciuta, T., Georgitzikis, K., Pennington, D., Mathieux, F., Huisman, J., and Bobba, S., 2020, RMIS, Raw Materials in the Battery Value Chain – Final Content for the Raw Materials Information System – Strategic Value Chains – Batteries Section, Publications Office of the European Union, Luxembourg.

[7] Muralikrishna, I.V., and Manickam, V., 2017, “Wastewater Treatment Technologies” in Environmental Management, Eds. Muralikrishna, I.V., and Manickam, V., Butterworth-Heinemann, Oxford, UK, 249–293.

[8] Obotey Ezugbe, E., and Rathilal, S., 2020, Membrane technologies in wastewater treatment: A review, Membranes, 10 (5), 89.

[9] Peleka, E.N., Gallios, G.P., and Matis, K.A., 2018, A perspective on flotation: A review, J. Chem. Technol. Biotechnol., 93 (3), 615–623.

[10] Cui, H., Huang, X., Yu, Z., Chen, P., and Cao, X., 2020, Application progress of enhanced coagulation in water treatment, RSC Adv., 10 (34), 20231–20244.

[11] Maćczak, P., Kaczmarek, H., and Ziegler-Borowska, M., 2020, Recent achievements in polymer bio-based flocculants for water treatment, Materials, 13 (18), 3951.

[12] Mufakhir, F.R., Yuliamsa, I.A., Juniarsih, A., Astuti, W., Sumardi, S., Handoko, A.S., Sudibyo, S., Alam, F.C., Arham, L.O., Poernomo, V., and Petrus, H.T.B.M., 2022, Heavy metals removal in liquid waste from spent-batteries recycling, IOP Conf. Ser.: Earth Environ. Sci., 1017 (1), 012004.

[13] Ebba, M., Asaithambi, P., and Alemayehu, E., 2022, Development of electrocoagulation process for wastewater treatment: Optimization by response surface methodology, Heliyon, 8 (5), e09383.

[14] Mansoorian, H.J., Mahvi, A.H., and Jafari, A.J., 2014, Removal of lead and zinc from battery industry wastewater using electrocoagulation process: Influence of direct and alternating current by using iron and stainless steel rod electrodes, Sep. Purif. Technol., 135, 165–175.

[15] Bhagawan, D., Poodari, S., Pothuraju, T., Srinivasulu, D., Shankaraiah, G., Yamuna Rani, M., Himabindu, V., and Vidyavathi, S., 2014, Effect of operational parameters on heavy metal removal by electrocoagulation, Environ. Sci. Pollut. Res., 21 (24), 14166–14173.

[16] Mollah, M.Y.A., Schennach, R., Parga, J.R., and Cocke, D.L., 2001, Electrocoagulation (EC) – Science and applications, J. Hazard. Mater., 84 (1), 29–41.

[17] Ministry of State Secretariat of the Republic of Indonesia, 2021, Peraturan Pemerintah Republik Indonesia, Lampiran VI PP No. 22 Tahun 2021, Ministry of State Secretariat of the Republic of Indonesia, Jakarta, Indonesia.

[18] Tahreen, A., Jami, M.S., and Ali, F., 2020, Role of electrocoagulation in wastewater treatment: A developmental review, J. Water Process Eng., 37, 101440.

[19] Khosa, M.K., Jamal, M.A., Hussain, A., Muneer, M., Zia, K.M., and Hafeez, S., 2013, Efficiency of aluminum and iron electrodes for the removal of heavy metals [(Ni (II), Pb (II), Cd (II)] by electrocoagulation method, J. Korean Chem. Soc., 57 (3), 316–321.

[20] McBeath, S.T., Nouri-Khorasani, A., Mohseni, M., and Wilkinson, D.P., 2020, In-situ determination of current density distribution and fluid modeling of an electrocoagulation process and its effects on natural organic matter removal for drinking water treatment, Water Res., 171, 115404.

[21] Vepsäläinen, M., and Sillanpää, M., 2020, “Electrocoagulation in the Treatment of Industrial Waters and Wastewaters” in Advanced Water Treatment, Elsevier, Amsterdam, Netherlands, 1–78.

[22] Vasudevan, S., Lakshmi, J., and Sozhan, G., 2011, Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water, J. Hazard. Mater., 192 (1), 26–34.

[23] Colantonio, N., and Kim, Y., 2016, Cadmium(II) removal mechanisms in microbial electrolysis cells, J. Hazard. Mater., 311, 134–141.

[24] David, M., 2017, Arsenic Removal from Water, https://www.911metallurgist.com/arsenic-removal-water/, accessed on March 13, 2024.

[25] Lewis, A.E., 2010, Review of metal sulphide precipitation, Hydrometallurgy, 104 (2), 222–234.

[26] de Repentigny, C., Courcelles, B., and Zagury, G.J., 2018, Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater, Environ. Sci. Pollut. Res., 25 (23), 23205–23214.

[27] Digital Analysis Corporation, 2019, Heavy Metal Removal from Industrial Wastewater, https://www.phadjustment.com/TArticles/Heavy_Metal_Reduction.html, accessed on March 13, 2024.

[28] Water Specialist, 2024, Recipitation-by-Ph, https://waterspecialists.biz/info-bulletins/precipitation-by-ph/, accessed on March 13, 2024.

[29] Huang, J.H., Kargl-Simard, C., Oliazadeh, M., and Alfantazi, A.M., 2004, pH-Controlled precipitation of cobalt and molybdenum from industrial waste effluents of a cobalt electrodeposition process, Hydrometallurgy, 75 (1-4), 77–90.

[30] Ugrina, M., Čeru, T., Nuić, I., and Trgo, M., 2020, Comparative study of mercury(II) removal from aqueous solutions onto natural and iron-modified clinoptilolite rich zeolite, Processes, 8 (11), 1523.

[31] Moed, N.M., and Ku, Y., 2022, The effect of Fe(II), Fe(III), Al(III), Ca(II) and Mg(II) on electrocoagulation of As(V), Water, 14 (2), 215.

[32] Kim, T., Kim, T.K., and Zoh, K.D., 2020, Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes, J. Water Process Eng., 33, 101109.

[33] Du, Z., Gong, Z., Qi, W., Li, E., Shen, J., Li, J., and Zhao, H., 2022, Coagulation performance and floc characteristics of poly-ferric-titanium-silicate-chloride in coking wastewater treatment, Colloids Surf., A, 642, 128413.

[34] Li, B., Zhao, J., Ge, W., Li, W., and Yuan, H., 2022, Coagulation-flocculation performance and floc properties for microplastics removal by magnesium hydroxide and PAM, J. Environ. Chem. Eng., 10 (2), 107263.

[35] Saxena, K., and Brighu, U., 2020, Comparison of floc properties of coagulation systems: Effect of particle concentration, scale and mode of flocculation, J. Environ. Chem. Eng., 8 (5), 104311.

[36] Lv, M., Li, D., Zhang, Z., Logan, B.E., Peter van der Hoek, J., Sun, M., Chen, F., and Feng, Y., 2021, Magnetic seeding coagulation: Effect of Al species and magnetic particles on coagulation efficiency, residual Al, and floc properties, Chemosphere, 268, 129363.

[37] Lee, S.Y., and Gagnon, G.A., 2016, Growth and structure of flocs following electrocoagulation, Sep. Purif. Technol., 163, 162–168.

[38] Zhang, W., Yao, J., Mu, Y., and Zhang, M., 2023, Electroflocculation of indigo dyeing wastewater from industrial production: Flocs growth and adsorption mechanism, Arabian J. Chem., 16 (12), 105335.

[39] Liu, Y., Liu, Y.Y., Zhang, X., Jiang, W.M., Xiong, W., and Li, J.J., 2024, Study on the treatment of oily wastewater by evaluating the growth process of aggregates in an electrocoagulation reactor, J. Contam. Hydrol., 260, 104269.

[40] He, W., Cheng, X., Huang, Y., Yang, Y., and Lu, J., 2024, The study of the effect of mass transfer of pollutants and flocs on continuous electrocoagulation processes, Sep. Purif. Technol., 329, 125222.

[41] Liu, Y., Zhang, X., Jiang, W., Wu, M., and Li, Z., 2021, Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors, Chem. Eng. J., 417, 129310.

[42] Bharti, M., Das, P.P., and Purkait, M.K., 2023, A review on the treatment of water and wastewater by electrocoagulation process: Advances and emerging applications, J. Environ. Chem. Eng., 11 (6), 111558.

[43] Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M.R., and Alkasrawi, M., 2015, Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance, Chem. Eng. J., 260, 749–756.

[44] Othmani, A., Kesraoui, A., and Seffen, M., 2017, The alternating and direct current effect on the elimination of cationic and anionic dye from aqueous solutions by electrocoagulation and coagulation flocculation, Euro-Mediterr. J. Environ. Integr., 2 (1), 6.

[45] Asaithambi, P., Govindarajan, R., Yesuf, M.B., Selvakumar, P., and Alemayehu, E., 2021, Investigation of direct and alternating current–electrocoagulation process for the treatment of distillery industrial effluent: Studies on operating parameters, J. Environ. Chem. Eng., 9 (2), 104811.

[46] Cerqueira, A.A., Souza, P.S.A., and Marques, M.R.C., 2014, Effects of direct and alternating current on the treatment of oily water in an electroflocculation process, Braz. J. Chem. Eng., 31 (3), 693–701.



DOI: https://doi.org/10.22146/ijc.93262

Article Metrics

Abstract views : 1033 | views : 373


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.