Optimizing Dye-Sensitized Solar Cell (DSSC) Performance through Synergistic Natural Dye Combinations from Beta vulgaris L., Curcuma longa L., and Pandanus amaryllifolius
Nita Kusumawati(1*), Pirim Setiarso(2), Supari Muslim(3), Nafisatus Zakiyah(4), Khofifatul Rahmawati(5), Fadlurachman Faizal Fachrirakarsie(6)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(3) Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(*) Corresponding Author
Abstract
This study optimizes dye-sensitized solar cell (DSSC) performance using a combination of natural dye components extracted from Beta vulgaris L. (beetroot), Curcuma longa L. (turmeric), and Pandanus amaryllifolius (pandanus leaf). These plants were selected for their natural pigments—betacyanin, curcuminoids, and chlorophyll—which potentially act as DSSC sensitizers. Dyes were extracted via maceration with ethanol solvent (1:6 sample:solvent ratio) for 24 h. Filtrates were combined in various ratios to test DSSC performance. The optimal C4 dye combination, with a 2:1:1 ratio (betacyanin:curcumin:chlorophyll), demonstrated the best performance. The UV-vis analysis revealed complex interactions and synergistic effects among dye combinations, characterized by increased light absorption in the 400–700 nm range. Cyclic voltammetry analysis showed favorable energy band gap values, confirming the pigments' suitability for DSSC applications. FTIR analysis confirmed the stable coexistence of the three dyes without new bond formation. Photovoltaic performance testing showed the C4 three-dye combination achieved the highest energy conversion efficiency of 3.57%. These results demonstrate the potential of this dye combination to contribute to the development of sustainable and efficient solar energy conversion in DSSCs.
Keywords
Full Text:
Full Text PDFReferences
[1] Abu-Rayash, A., and Dincer, I., 2020, Analysis of the electricity demand trends amidst the COVID-19 coronavirus pandemic, Energy Res. Social Sci., 68, 101682.
[2] Aktar, M.A., Alam, M.M., and Al-Amin, A.Q., 2021, Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19, Sustainable Prod. Consumption, 26, 770–781.
[3] Koot, M., and Wijnhoven, F., 2021, Usage impact on data center electricity needs: A system dynamic forecasting model, Appl. Energy, 291, 116798.
[4] Amin, M., Shah, H.H., Fareed, A.G., Khan, W.U., Chung, E., Zia, A., Rahman Farooqi, Z.U., and Lee, C., 2022, Hydrogen production through renewable and non-renewable energy processes and their impact on climate change, Int. J. Hydrogen Energy, 47 (77), 33112–33134.
[5] Shubbak, M.H., 2019, Advances in solar photovoltaics: Technology review and patent trends, Renewable Sustainable Energy Rev., 115, 109383.
[6] Shashanka, R., Esgin, H., Yilmaz, V.M., and Caglar, Y., 2020, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells, J. Sci.: Adv. Mater. Devices, 5 (2), 185–191.
[7] Orhan, E., Gökçen, M., and Taran, S., 2021, Effect of the photoanode fabrication condition, electrolyte type and illumination type on dye-sensitized solar cells performance, Bull. Mater. Sci., 44 (1), 60.
[8] Özaydın, C., and Gözel, M., 2023, The use of copper-quercetin complex as photosensitizer in dye sensitive solar cells and its photovoltaic performance, Braz. J. Phys., 53 (1), 28.
[9] Zhang, C., Zhang, J., Ma, X., and Feng, Q., 2021, “Dye-Sensitized Solar Cell” in Semiconductor Photovoltaic Cells, Springer Singapore, Singapore, 325–372.
[10] Weldemicheal, H.T., Desta, M.A., and Mekonnen, Y.S., 2023, Derivatized photosensitizer for an improved performance of the dye-sensitized solar cell, Results Chem., 5, 100838.
[11] Kusumawati, N., Setiarso, P., Muslim, S., and Purwidiani, N., 2018, Synergistic ability of PSf and PVDF to develop high-performance PSf/PVDF coated membrane for water treatment, Rasayan J. Chem., 11 (1), 260–279.
[12] Kusumawati, N., Setiarso, P., Santoso, A.B., Muslim, S., A’yun, Q., and Putri, M.M., 2023, Characterization of poly(vinylidene fluoride) nanofiber-based electrolyte and its application to dye-sensitized solar cell with natural dyes, Indones. J. Chem., 23 (1), 113–126.
[13] Kusumawati, N., Setiarso, P., and Muslim, S., 2018, Polysulfone/polyvinylidene fluoride composite membrane: Effect of coating dope composition on membrane characteristics and performance, Rasayan J. Chem., 11 (3), 1034–1041.
[14] Kusumawati, N., Setiarso, P., Muslim, S., Hafidha, Q.A., Cahyani, S.A., and Fachrirakarsie, F.F., 2024, Optimization thickness of photoanode layer and membrane as electrolyte trapping medium for improvement dye-sensitized solar cell performance, Sci. Technol. Indones., 9 (1), 7–16.
[15] Bashar, H., Bhuiyan, M.M.H., Hossain, M.R., Kabir, F., Rahaman, M.S., Manir, M.S., and Ikegami, T., 2019, Study on combination of natural red and green dyes to improve the power conversion efficiency of dye sensitized solar cells, Optik, 185, 620–625.
[16] Zakiyah, N., Kusumawati, N., Setiarso, P., Muslim, S., A’yun, Q., and Putri, M.M., 2024, Characterization and application of natural photosensitizer and poly(vinylidene fluoride) nanofiber membranes-based electrolytes in DSSC, Indones. J. Chem., 24 (3), 701–714.
[17] Theerthagiri, J., Murthy, A.P., Lee, S.J., Karuppasamy, K., Arumugam, S.R., Yu, Y., Hanafiah, M.M., Kim, H.S., Mittal, V., and Choi, M.Y., 2021, Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion, Ceram. Int., 47 (4), 4404–4425.
[18] Peter, S., Lyczko, N., Gopakumar, D., Maria, H.J., Nzihou, A., and Thomas, S., 2021, Chitin and chitosan based composites for energy and environmental applications: A review, Waste Biomass Valorization, 12 (9), 4777–4804.
[19] Srivastava, A., Singh Chauhan, B., Chand Yadav, S., Kumar Tiwari, M., Akash Kumar Satrughna, J., Kanwade, A., Bala, K., and Shirage, P.M., 2022, Performance of dye-sensitized solar cells by utilizing Codiaeum variegatum leaf and Delonix regia flower as natural sensitizers, Chem. Phys. Lett., 807, 140087.
[20] Darmawan, M.I., Hardani, H., Halid, I., Aini, A., Ustiawaty, J., and Fardani, R.A., 2023, Fabrication of dye-sensitized solar cells (DSSC) using Pandanus amaryllifolius extract, AIP Conf. Proc., 2623 (1), 030002.
[21] Estiningtyas, I.W., Kusumawati, N., Setiarso, P., Muslim, S., Rahayu, N.T., Safitri, R.N., Zakiyah, N., and Fachrirakarsie, F.F., 2023, Effect of natural dye combination and pH extraction on the performance of dye-sensitized photovoltaics solar cell, Int. J. Renewable Energy Dev., 12 (6), 1054–1060.
[22] Teja, A.S., Srivastava, A., Satrughna, J.A.K., Tiwari, M.K., Kanwade, A., Chand Yadav, S., and Shirage, P.M., 2023, Optimal processing methodology for futuristic natural dye-sensitized solar cells and novel applications, Dyes Pigm., 210, 110997.
[23] Prakash, P., and Janarthanan, B., 2023, Review on the progress of light harvesting natural pigments as DSSC sensitizers with high potency, Inorg. Chem. Commun., 152, 110638.
[24] Ibrahim, I., Lim, H.N., Wan, N.W.K., Huang, N.M., Lim, S.P., Busayaporn, W., and Nakajima, H., 2021, Plasmonic silver sandwich structured photoanode and reflective counter electrode enhancing power conversion efficiency of dye-sensitized solar cell, Sol. Energy, 215, 403–409.
[25] Mejica, G.F., Ramaraj, R., and Unpaprom, Y., 2022, Natural dye (chlorophyll, anthocyanin, carotenoid, flavonoid) photosensitizer for dye-sensitized solar cell: A review, Maejo Int. J. Energy Environ. Commun., 4 (1), 12–22.
[26] Udonkang, M.I., Inyang, I.J., Ukorebi, A.N., Effiong, F., Akpan, U., and Bassey, I.E., 2018, Spectrophotometry, physiochemical properties, and histological staining potential of aqueous and ethanol extracts of beetroot on various tissues of an albino rat, Biomed. Hub, 3 (3), 1–10.
[27] Gengatharan, A., Dykes, G., and Choo, W.S., 2021, Betacyanins from Hylocereus polyrhizus: Pectinase-assisted extraction and application as a natural food colourant in ice cream, J. Food Sci. Technol., 58 (4), 1401–1410.
[28] Nouairi, M.E.A., Freha, M., and Bellil, A., 2021, Study by absorption and emission spectrophotometry of the efficiency of the binary mixture (ethanol-water) on the extraction of betanin from red beetroot, Spectrochim. Acta, Part A, 260, 119939.
[29] Devadiga, D., and Ahipa, T.N., 2020, “Betanin: A Red-Violet Pigment - Chemistry and Applications” in Chemistry and Technology of Natural and Synthetic Dyes and Pigments, Eds. Samarta, A.K., Awwad, N.S., and Algarni, H.M., IntechOpen, Rijeka, Croatia.
[30] El-Saadony, M.T., Yang, T., Korma, S.A., Sitohy, M., Abd El-Mageed, T.A., Selim, S., Al Jaouni, S.K., Salem, H.M., Mahmmod, Y., Soliman, S.M., Mo’men, S.A.A., Mosa, W.F.A., El-Wafai, N.A., Abou-Aly, H.E., Sitohy, B., Abd El-Hack, M.E., El-Tarabily, K.A., and Saad, A.M., 2023, Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review, Front. Nutr., 9, 1040259.
[31] Sharifi-Rad, J., El Rayess, Y., Rizk, A.A., Sadaka, C., Zgheib, R., Zam, W., Sestito, S., Rapposelli, S., Neffe-Skocińska, K., Zielińska, D., Salehi, B., Setzer, W.N., Dosoky, N.S., Taheri, Y., El Beyrouthy, M., Martorell, M., Ostrander, E.A., Suleria, H.A.R., Cho, W.C., Maroyi, A., and Martins, N., 2020, Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications, Front. Pharmacol., 11, 01021.
[32] Ishak, N., Salleh, H., Dagang, A.N., Salisa, A.R., Kamarulzaman, N.H., Ghazali, S.M., Abd Majid, S., and Ahmad, Z., 2019, Hybrid solar cell using conjugated chlorophyll from Pandanus amaryllifoliud as photosensitizers, Int. J. Recent Technol. Eng., 8 (4), 10142–10147.
[33] Rahmalia, W., Septiani, S., Naselia, U.A., Usman, T., Silalahi, I.H., and Mouloungui, Z., 2021, Performance improvements of bixin and metal-bixin complexes sensitized solar cells by 1-methyl-3-propylimidazolium iodide in electrolyte system, Indones. J. Chem., 21 (3), 669–678.
[34] Makangara, J.J., Sahini, M.G., and Surendra babu, N., 2024, Theoretical and conceptual framework to design D-π-A type organic dyes for application dye-sensitized solar cells, J. Indian Chem. Soc., 101 (2), 101118.
[35] Setiarso, P., Harsono, R.V., and Kusumawati, N., 2023, Fabrication of dye sensitized solar cell (DSSC) using combination of dyes extracted from curcuma (Curcuma xanthorrhiza) rhizome and binahong (Anredera cordifolia) leaf with treatment in pH of the extraction, Indones. J. Chem., 23 (4), 924–936.
[36] Kabir, F., Bhuiyan, M.M.H., Hossain, M.R., Bashar, H., Rahaman, M.S., Manir, M.S., Ullah, S.M., Uddin, S.S., Mollah, M.Z.I., Khan, R.A., Huque, S., and Khan, M.A., 2019, Improvement of efficiency of dye sensitized solar cells by optimizing the combination ratio of natural red and yellow dyes, Optik, 179, 252–258.
[37] Zang, Y., Chen, L., Zhou, J., Xu, R., and Liu, Z., 2021, Enhanced light utilization in semitransparent organic solar cells based on a nonfullerene acceptor of IEICO-4F, Appl. Phys. A Mater. Sci. Process, 127 (11), 889.
[38] Afolabi, S.O., Semire, B., and Idowu, M.A., 2021, Electronic and optical properties’ tuning of phenoxazine-based D-A2-π-A1 organic dyes for dye-sensitized solar cells. DFT/TDDFT investigations, Heliyon, 7 (4), e06827.
[39] Kusumawati, N., Setiarso, P., Sianita, M.M., and Muslim, S., 2018, Transport properties, mechanical behavior, thermal and chemical resistance of asymmetric flat sheet membrane prepared from PSf/PVDF blended membrane on gauze supporting layer, Indones. J. Chem., 18 (2), 257–264.
[40] Sari, P.L., Munawaroh, H., Wahyuningsih, S., and Ramelan, A.H., 2020, Structure and optical properties of Al-doped ZnO nanodrums as anti-reflection coating material in solar cells, Indones. J. Chem., 20 (1), 54–59.
[41] Suharyadi, S., Syauqi, M.I., Amelia, P., Yunita, Y., and Gunlazuardi, J., 2023, Dye-Sensitized solar cell photoelectrochemical tandem system performance study: TiO2 nanotube/N719, BiVO4/TiO2 nanotube, Ti3+/TiO2 nanotube for nitrogen reduction reaction to ammonia, Indones. J. Chem., 23 (3), 583–593.
[42] Absar, N., Kalam, T.D.A., Raza, M.Q., Ashok, M., and Islam, R., 2024, Redox conditions of Early Cambrian Ocean as deciphered from multi-proxy geochemical and isotopic studies of Proto-Tethys carbonaceous sediments from Outer Lesser Himalaya, India, J. Earth Syst. Sci., 133 (1), 26.
[43] Kabir, F., Bhuiyan, M.M.H., Manir, M.S., Rahaman, M.S., Khan, M.A., and Ikegami, T., 2019, Development of dye-sensitized solar cell based on combination of natural dyes extracted from Malabar spinach and red spinach, Results Phys., 14, 102474.
[44] Kabir, F., Bhuiyan, M.M.H., Hossain, M.R., Bashar, H., Rahaman, M.S., Manir, M.S., Khan, R.A., and Ikegami, T., 2019, Effect of combination of natural dyes and post-TiCl4 treatment in improving the photovoltaic performance of dye-sensitized solar cells, C. R. Chim., 22 (9-10), 659–666.
[45] Tractz, G., Viomar, A., Dias, B., de Lima, C.A., Banczek, E.P., da Cunha, M.T., Antunes, S.R.M., and Rodrigues, P.R.P., 2019, Recombination study of dye sensitized solar cells with natural extracts, J. Braz. Chem. Soc., 30 (2), 371–378.
[46] Zhou, P., Lin, B., Chen, R., An, Z., Chen, X., An, Q., and Chen, P., 2021, Effect of extending the conjugation of dye molecules on the efficiency and stability of dye-sensitized solar cells, ACS Omega, 6 (44), 30069–30077.
[47] Cahya, E.C., Rusliani, P.F., Suhendi, E., and Yuliarto, B., 2024, Performance of dye-sensitized solar cells with mixed three natural pigments and reduced graphene oxide as a counter electrode, Results Opt., 14, 100592.
DOI: https://doi.org/10.22146/ijc.93830
Article Metrics
Abstract views : 1420 | views : 640Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.