Doping TiO2 with Cr and Cu Elements from Electroplating Wastewater as a Single Source for Improvement of the Photocatalyst Activity under Visible Light in the Degradation of Anionic Surfactant

https://doi.org/10.22146/ijc.93928

Endang Tri Wahyuni(1*), Sulistyaning Budi(2), Dea Aurellia(3), Rizky Aprilia Widianti(4), Novianti Dwi Lestari(5), Nur Farhana Jaafar(6), Suherman Suherman(7)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) School of Chemical Sciences, Universiti Sains Malaysia, USM Penang 11800, Malaysia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


This paper discusses the use of electroplating wastewater containing Cr and Cu as a single dopant source to improve the activity of TiO2 photocatalysts under visible light. Sol-gel doping was used to dop TiO2 with Cr and Cu in the wastewater. The doped TiO2 photocatalysts were characterized using SRUV/visible and XRD instruments, and their effect on the degradation of linear alkyl benzene sulphonate (LAS) in laundry wastewater was evaluated. The electroplating wastewater used in this research contains Cr and Cu about 2000 and 20 mg/L, respectively. These metals were successfully doped into a TiO2 structure, which significantly reduced the gap energy of TiO2, allowing it to be more active under visible light. The highest photodegradation of the 125 mg/L LAS in 25 mL of the laundry wastewater with pH 7 was achieved by using 30 mg of TiO2/Cr-Cu (200/2) photocatalyst, which degraded up to 60% of LAS in 60 min. With the same conditions, the LAS photodegradation increased to 100% upon the second run. This approach can help turn hazardous electroplating wastewater into a valuable material to solve environmental problems.

Keywords


electroplating wastewater; Cr-Cu; TiO2; linear alkyl benzene sulphonate; photodegradation

Full Text:

Full Text PDF


References

[1] Amini, M., and Ashrafi, M., 2016, Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles, Nanochem. Res., 1 (1), 79–86.

[2] Wu, S., Hu, H., Lin, Y., Zhang, J., and Hu, Y.H., 2020, Visible light photocatalytic degradation of tetracycline over TiO2, Chem. Eng. J., 382, 112842.

[3] Dalida, M.L.P., Amer, K.M.S., Su, C.C., and Lu, M.C., 2014, Photocatalytic degradation of acetaminophen in modified TiO2 under visible irradiation, Environ. Sci. Pollut. Res., 21 (2), 1208–1216.

[4] Zhu, X., Zhou, D., Cang, L., and Wang, Y., 2012, TiO2 photocatalytic degradation of 4-chlorobiphenyl as affected by solvents and surfactants, J. Soils Sediments, 12 (3), 376–385.

[5] Kaur, R., Singla, P., and Singh, K., 2018, Transition metals (Mn, Ni, Co) doping in TiO2 nanoparticles and their effect on degradation of diethyl phthalate, Int. J. Environ. Sci. Technol., 15 (11), 2359–2368.

[6] Li, X., Guo, Z., and He, T., 2013, The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance, Phys. Chem. Chem. Phys., 15 (46), 20037–20045.

[7] Vásquez, G.C., Maestre, D., Cremades, A., Ramírez-Castellanos, J., Magnano, E., Nappini, S., and Karazhanov, S.Z., 2018, Understanding the effects of Cr doping in rutile TiO2 by DFT calculations and X-ray spectroscopy, Sci. Rep., 8 (1), 8740.

[8] Lee, H., Jang, H.S., Kim, N.Y., and Joo, J.B., 2021, Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions, J. Ind. Eng. Chem., 99, 352–363.

[9] Suwondo, K.P., Aprilita, N.H., and Wahyuni, E.T., 2022, Enhancement of TiO2 photocatalytic activity under visible light by doping with Cu from electroplating wastewater, React. Kinet., Mech. Catal., 135 (1), 479–497.

[10] Thirupathi, B., and Smirniotis, P.G., 2011, Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures, Appl. Catal., B, 110, 195–206.

[11] Shaban, M., Ahmed, A.M., Shehata, N., Betiha, M.A., and Rabie, A.M., 2019, Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue, J. Colloid Interface Sci., 555, 31–41.

[12] Waseem, S., Anjum, S., Mustafa, L., Dar, A., Bashir, F., and Zia, R., 2015, Effects of Cr and Fe co-doping on structural, optical, electrical and magnetic properties of titanium dioxide (TiO2), Mater. Sci.-Pol., 33 (3), 508–514.

[13] Thambiliyagodage, C., and Mirihana, S., 2021, Photocatalytic activity of Fe and Cu co-doped TiO2 nanoparticles under visible light, J. Sol-Gel Sci. Technol., 99 (1), 109–121.

[14] Jalali, J., Mozammel, M., and OjaghiIlkhchi, M., 2017, Photodegradation of organic dye using co-doped Ag/Cu TiO2 nanoparticles: synthesis and characterization, J. Mater. Sci.: Mater. Electron., 28 (22), 16776–16787.

[15] Bradai, M., Han, J., El Omri, A., Funamizu, N., Sayadi, S., and Isoda, H., 2016, Effect of linear alkylbenzene sulfonate (LAS) on human intestinal Caco-2 cells at non cytotoxic concentrations, Cytotechnology, 68 (4), 1267–1275.

[16] Li, J., Song, Y., Wei, Z., Wang, F., Zhang, X., Zhu, H., Sheng, S., and Zou, H., 2023, Unique kinetics feature and excellent photocatalytic performance of tetracycline photodegradation using yolk-shell TiO2@void@TiO2:Eu3+, Appl. Catal., A, 650, 119008.

[17] Khairy, M., Kamar, E.M., and Mousa, M.A., 2022, Photocatalytic activity of nano-sized Ag and Au metal-doped TiO2 embedded in rGO under visible light irradiation, Mater. Sci. Eng., B, 286, 116023.

[18] Hao, B., Guo, J., Zhang, L., and Ma, H., 2022, Cr-doped TiO2/CuO photocatalytic nanofilms prepared by magnetron sputtering for wastewater treatment, Ceram. Int., 48 (5), 7106–7116.

[19] Wahyuni, E.T., Yulikayani, P.Y., and Aprilita, N.H., 2020, Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 for photodegradation of amoxicillin in water, J. Mater. Environ. Sci., 11 (4), 670–683.

[20] Raguram, T., and Rajni, K.S., 2022, Synthesis and characterisation of Cu - doped TiO2 nanoparticles for DSSC and photocatalytic applications, Int. J. Hydrogen Energy, 47 (7), 4674–4689.

[21] López, R., Gómez, R., and Oros-Ruiz, S., 2011, Photophysical and photocatalytic properties of TiO2-Cr sol-gel prepared semiconductors, Catal. Today, 166 (1), 159–165.

[22] Bsiri, N., Zrir, M.A., Bardaoui, A., and Bouaïcha, M., 2016, Morphological, structural and ellipsometric investigations of Cr doped TiO2 thin films prepared by sol-gel and spin coating, Ceram. Int., 42 (9), 10599–10607.

[23] Manga Raju, I., Siva Rao, T., Lakshmi, K.V.D., Chandra, M.R., Padmaja, J.S., and Divya, G., 2019, Poly 3-Thenoic acid sensitized, Copper doped anatase/brookite TiO2 nanohybrids for enhanced photocatalytic degradation of an organophosphorus pesticide, J. Environ. Chem. Eng., 7 (4), 103211.

[24] Riyadi, T.W.B., Sarjito, S., Masyrukan, M., and Riswan, R.A., 2017, Mechanical properties of Cr-Cu coatings produced by electroplating, AIP Conf. Proc., 1855 (1), 030007.

[25] Varsha, J., Mishra, K.D., and Govind, P., 2013, Effects of linear alkyl benzene sulfonate on the liver tissues of Puntius ticto fish, Int. J. Chem. Life Sci., 2 (1), 1068–1070.

[26] Wahyuni, E.T., Roto, R., Sabrina, M., Anggraini, V., Leswana, N.F., and Vionita, A.C., 2016, Photodegradation of detergent anionic surfactant in wastewater using UV/TiO2/H2O2 and UV/Fe2+/H2O2 processes, Am. J. Appl. Chem., 4 (5), 174–180.

[27] Wahyuni, E.T., Istiningsih, I., and Suratman, A., 2020, Use of visible light for photo degradation of linear alkyl-benzene sulfonate in laundry wastewater over Ag-doped TiO2, J. Environ. Sci. Technol., 13 (3), 124–130.

[28] Noorimotlagh, Z., Kazeminezhad, I., Jaafarzadeh, N., Ahmadi, M., and Ramezani, Z., 2020, Improved performance of immobilized TiO2 under visible light for the commercial surfactant degradation: Role of carbon doped TiO2 and anatase/rutile ratio, Catal. Today, 348, 277–289.

[29] Maryani, Y., and Kustiningsih, I., 2015, Determination and characterization of photocatalytic products of linear alkyl sulphonate by high performance liquid chromatography and nuclear magnetic resonance, Procedia Chem., 17, 216–223.

[30] Ahmari, H., Zeinali Heris, S., and Hassanzadeh Khayyat, M., 2016, Photo catalytic degradation of linear alkylbenzene sulfonic acid, Res. Chem. Intermed., 42 (8), 6587–6606.

[31] Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1), 69–96.



DOI: https://doi.org/10.22146/ijc.93928

Article Metrics

Abstract views : 1502 | views : 585


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.