DFT Insights into the Structural, Mechanical, Electronic and Optical Properties of Novel InZnCl3 and InCdCl3 Chloro-Perovskites

https://doi.org/10.22146/ijc.94870

Redi Kristian Pingak(1*), Zakarias Seba Ngara(2), Albert Zicko Johannes(3), Minsyahril Bukit(4), Jehunias Leonidas Tanesib(5), Fidelis Nitti(6), Hery Leo Sianturi(7), Bartholomeus Pasangka(8)

(1) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Indonesia
(2) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Indonesia
(3) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Indonesia
(4) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Indonesia
(5) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Indonesia
(6) Department of Chemistry, Faculty of Sciences and Engineering, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Indonesia
(7) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Indonesia
(8) Department of Physics, Faculty of Sciences and Engineering, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, Indonesia
(*) Corresponding Author

Abstract


The ABX3 perovskite materials have recently emerged as one of the most promising materials for optoelectronic applications. In the present study, novel perovskites in the form of InZnCl3 and InCdCl3 are computationally investigated to determine their key characteristics, including structural, mechanical, electronic, and optical characteristics. These characteristics were evaluated using the density functional theory (DFT) implemented in the quantum espresso code. The results indicated that both materials exhibit chemical, dynamic, and mechanical stability. Moreover, these perovskites are predicted to be ductile, rendering them suitable for a broad array of optoelectronic applications, including solar cells. The electronic band structure and the density of states of the materials revealed their characteristics as indirect semiconductors with band gap energy values of 0.96 eV for InZnCl3 and 1.83 eV for InCdCl3 perovskites. The optical properties calculations also unveiled that these perovskites possess strong absorption in the visible-ultraviolet spectrum (up to 106 cm−1) and low reflectivity. The calculated refractive index and extinction coefficient of the compounds were also predicted in this study. These collective findings strongly suggest the potential applications of these novel materials in optoelectronic devices.

Keywords


DFT; Quantum Espresso; perovskite; mechanical property; optoelectronic property

Full Text:

Full Text PDF


References

[1] Anaya, M., Lozano, G., Calvo, M.E., and Míguez, H., 2017, ABX3 Perovskites for tandem solar cells, Joule, 1 (4), 769–793.

[2] Zhang, L., Mei, L., Wang, K., Lv, Y., Zhang, S., Lian, Y., Liu, X., Ma, Z., Xiao, G., Liu, Q., Zhai, S., Zhang, Shengli, Liu, G., Yuan, L., Guo, B., Chen, Z., Wei, K., Liu, A., Yue, S., Niu, G., Pan, X., Sun, J., Hua, Y., Wu, W.Q., Di, D., Zhao, B., Tian, J., Wang, Z., Yang, Y., Chu, L., Yuan, M., Zeng, H., Yip, H.L., Yan, K., Xu, W., Zhu, L., Zhang, W., Xing, G., Gao, F., and Ding, L., 2023, Advances in the application of perovskite materials, Nano-Micro Lett., 15 (1), 177.

[3] Zhou, Y., Wang, J., Luo, D., Hu, D., Min, Y., and Xue, Q., 2022, Recent progress of halide perovskites for thermoelectric application, Nano Energy, 94, 106949.

[4] Green, M.A., Ho-Baillie, A., and Snaith, H.J., 2014, The emergence of perovskite solar cells, Nat. Photonics, 8 (7), 506–514.

[5] Haque, M.A., Kee, S., Villalva, D.R., Ong, W.L., and Baran, D., 2020, Halide perovskites: Thermal transport and prospects for thermoelectricity, Adv. Sci., 7 (10), 1903389.

[6] Kim, J.S., Heo, J.M., Park, G.S., Woo, S.J., Cho, C., Yun, H.J., Kim, D.H., Park, J., Lee, S.C., Park, S.H., Yoon, E., Greenham, N.C., and Lee, T.W., 2022, Ultra-bright, efficient and stable perovskite light-emitting diodes, Nature, 611 (7937), 688–694.

[7] Wibowo, A., Sheikh, M.A.K., Diguna, L.J., Ananda, M.B., Marsudi, M.A., Arramel, A., Zeng, S., Wong, L.J., and Birowosuto, M.D., 2023, Development and challenges in perovskite scintillators for high-resolution imaging and timing applications, Commun. Mater., 4 (1), 21.

[8] Qin, C., Sandanayaka, A.S.D., Zhao, C., Matsushima, T., Zhang, D., Fujihara, T., and Adachi, C., 2020, Stable room-temperature continuous-wave lasing in quasi-2D perovskite films, Nature, 585 (7823), 53–57.

[9] Zhan, X., Zhang, X., Liu, Z., Chen, C., Kong, L., Jiang, S., Xi, S., Liao, G., and Liu, X., 2021, Boosting the performance of self-powered CsPbCl3-based UV photodetectors by a sequential vapor-deposition strategy and heterojunction engineering, ACS Appl. Mater. Interfaces, 13 (38), 45744–45757.

[10] Shahzad, M.K., Hussain, S., Farooq, M.U., Abdullah, A., Ashraf, G.A., Riaz, M., and Ali, S.M., 2024, First principle investigation of tungsten based cubic oxide perovskite materials for superconducting applications: A DFT study, J. Phys. Chem. Solids, 186, 111813.

[11] Zhang, H., Zhang, L., Zhao, Z., Xin, W., Niu, J., He, J., and Jiao, W., 2024, A sensitive CsBr/Cs3Bi2Br3I6 heterostructure perovskite gas sensor for H2S detection at room temperature with high stability, Sens. Actuators, B, 403, 135238.

[12] Chen, Q., Zhou, H., Fang, Y., Stieg, A.Z., Song, T.B., Wang, H.H., Xu, X., Liu, Y., Lu, S., You, J., Sun, P., McKay, J., Goorsky, M.S., and Yang, Y., 2015, The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells, Nat. Commun., 6 (1), 7269.

[13] Sun, Y., Chen, H., Zhang, T., and Wang, D., 2018, Chemical state of chlorine in perovskite solar cell and its effect on the photovoltaic performance, J. Mater. Sci., 53 (19), 13976–13986.

[14] Al Katrib, M., Planes, E., and Perrin, L., 2022, Effect of chlorine addition on the performance and stability of electrodeposited mixed perovskite solar cells, Chem. Mater., 34 (5), 2218–2230.

[15] Bhattarai, S., Pandey, R., Madan, J., Ansari, M.Z., Hossain, M.K., Amami, M., Ahammad, S.H., and Rashed, A.N.Z., 2024, Chlorine-doped perovskite materials for highly efficient perovskite solar cell design offering an efficiency of nearly 29%, Prog. Photovoltaics Res. Appl., 32 (1), 25–34.

[16] Wang, S., Edwards, P.R., Abdelsamie, M., Brown, P., Webster, D., Ruseckas, A., Rajan, G., Neves, A.I.S., Martin, R.W., Sutter-Fella, C.M., Turnbull, G.A., Samuel, I.D.W., and Jagadamma, L.K., 2023, Chlorine retention enables the indoor light harvesting of triple halide wide bandgap perovskites, J. Mater. Chem. A, 11 (23), 12328–12341.

[17] Husain, M., Ullah, A., Algahtani, A., Tirth, V., Al-Mughanam, T., Alghtani, A.H., Sfina, N., Briki, K., Albalawi, H., Amin, M.A., Azzouz-Rached, A., and Rahman, N., 2023, Insight into the structural, mechanical and optoelectronic properties of ternary cubic barium-based BaMCl3 (M = Ag, Cu) chloroperovskites compounds, Crystals, 13 (1), 140.

[18] Rahman, N., Husain, M., Tirth, V., Algahtani, A., Alqahtani, H., Al-Mughanam, T., Alghtani, A.H., Khan, R., Sohail, M., Khan, A.A., Azzouz-Rached, A., and Khan, A., 2023, Appealing perspectives of the structural, electronic, elastic and optical properties of LiRCl3 (R = Be and Mg) halide perovskites: A DFT study, RSC Adv., 13 (27), 18934–18945.

[19] Jehan, A., Husain, M., Tirth, V., Algahtani, A., Uzair, M., Rahman, N., Khan, A., and Khan, S.N., 2023, Investigation of the structural, electronic, mechanical, and optical properties of NaXCl3 (X = Be, Mg) using density functional theory, RSC Adv., 13 (41), 28395–28406.

[20] Jehan, A., Husain, M., Sfina, N., Khan, S.N., Rahman, N., Tirth, V., Khan, R., Sohail, M., Rached, A.A., and Khan, A., 2023, First-principles calculations to investigate structural, elastic, electronic, and optical properties of XSrCl3 (X = Li, Na), Optik, 287, 171088.

[21] Lakhdar, B., Anissa, B., Radouan, D., Al Bouzieh, N., and Amrane, N., 2023, Structural, electronic, elastic, optical and thermoelectric properties of ASiCl3 (A = Li, Rb and Cs) chloroperovskites: A DFT study, Opt. Quantum Electron., 56 (3), 313.

[22] Khan, N.U., Abdullah, A., Khan, U.A., Tirth, V., Al-Humaidi, J.Y., Refat, M.S., Algahtani, A., and Zaman, A., 2023, Investigation of structural, opto-electronic and thermoelectric properties of titanium based chloro-perovskites XTiCl3 (X = Rb, Cs): A first-principles calculations, RSC Adv., 13 (9), 6199–6209.

[23] Behera, D., Geleta, T.A., Allaoui, I., Khuili, M., Mukherjee, S.K., Akila, B., and Al-Qaisi, S., 2024, First-principle analysis of optical and thermoelectric properties in alkaline-based perovskite compounds AInCl3 (A = K, Rb), Eur. Phys. J. Plus, 139 (2), 127.

[24] Ullah, S., Abbas, M., Tariq, S., Batoo, K.M., Rahman, N., Gul, U., Husain, M., Hussain, S., Hasb Elkhalig, M.M.S., and Ghani, M.U., 2024, Density functional quantum computations to investigate the physical prospects of lead-free chloro-perovskites QAgCl3 (Q = K, Rb) for optoelectronic applications, Trans. Electr. Electron. Mater., 25 (3), 327–339.

[25] Ahmed, M., Bakar, A., Quader, A., Ahmad, R.A., and Ramay, S.M., 2024, First-principles calculations to investigate structural, elastic, mechanical, electronic and optical characteristics of RbSrX3 (X = Cl, Br), Chem. Phys., 581, 112260.

[26] Asif, T.I., Saiduzzaman, M., Hossain, K.M., Shuvo, I.K., Hasan, M.N., Ahmad, S., and Mitro, S.K., 2024, Pressure-driven modification of optoelectronic features of ACaCl3 (A = Cs, Tl) for device applications, Heliyon, 10 (5), e26733.

[27] Husain, M., Rahman, N., Albalawi, H., Ezzine, S., Amami, M., Zaman, T., Rehman, A.U., Sohail, M., Khan, R., Khan, A.A., Tahir, T., and Khan, A., 2022, Examining computationally the structural, elastic, optical, and electronic properties of CaQCl3 (Q = Li and K) chloroperovskites using DFT framework, RSC Adv., 12, 32338-32349.

[28] Murshed, M.N., El Sayed, M.E., Naji, S., and Samir, A., 2021, Electronic and optical properties and upper light yield estimation of new scintillating material TlMgCl3: Ab initio study, Results Phys., 29, 104695.

[29] Bouhmaidi, S., Azouaoui, A., Benzakour, N., Hourmatallah, A., and Setti, L., 2022, First-principles calculations on structural, electronic, elastic, optical and thermoelectric properties of thallium based chloroperovskites TlMCl3 (M = Zn and Cd), Comput. Condens. Matter., 33, e00756.

[30] Pingak, R.K., Bouhmaidi, S., Harbi, A., Setti, L., Nitti, F., Moutaabbid, M., Johannes, A.Z., Hauwali, N.U.J., and Ndii, M.Z., 2023, A DFT investigation of lead-free TlSnX3 (X = Cl, Br, or I) perovskites for potential applications in solar cells and thermoelectric devices, RSC Adv., 13 (48), 33875–33886.

[31] Pingak, R.K., Johannes, A.Z., Hauwali, N.U.J., and Deta, U.A., 2023, Lead-free perovskites TlGeClxBr3-x (x=0,1,2,3) as promising materials for solar cell application: A DFT study, J. Phys.: Conf. Ser., 2623 (1), 012002.

[32] Bouhmaidi, S., Uddin, M.B., Pingak, R.K., Ahmad, S., Rubel, M.H.K., Hakamy, A., and Setti, L., 2023, Investigation of heavy thallium perovskites TlGeX3 (X = Cl, Br and I) for optoelectronic and thermoelectric applications: A DFT study, Mater. Today Commun., 37, 107025.

[33] Rony, J.K., Islam, M., Saiduzzaman, M., Hossain, K.M., Alam, S., Biswas, A., Mia, M.H., Ahmad, S., and Mitro, S.K., 2024, TlBX3 (B = Ge, Sn; X = Cl, Br, I): Promising non-toxic metal halide perovskites for scalable and affordable optoelectronics, J. Mater. Res. Technol., 29, 897–909.

[34] Pingak, R.K., Harbi, A., Moutaabbid, M., Johannes, A.Z., Hauwali, N.U.J., Bukit, M., Nitti, F., and Ndii, M.Z., 2023, Lead-free perovskites InSnX3 (X = Cl, Br, I) for solar cell applications: A DFT study on the mechanical, optoelectronic, and thermoelectric properties, Mater. Res. Express, 10 (9), 095507.

[35] Khan, S., Mehmood, N., Ahmad, R., Kalsoom, A., and Hameed, K., 2022, Analysis of structural, elastic and optoelectronic properties of indium-based halide perovskites InACl3 (A = Ge, Sn, Pb) using density functional theory, Mater. Sci. Semicond. Process., 150, 106973.

[36] Han, P., Zhou, W., Zheng, D., Zhang, X., Li, C., Kong, Q., Yang, S., Lu, R., and Han, K., 2022, Lead-free all-inorganic indium chloride perovskite variant nanocrystals for efficient luminescence, Adv. Opt. Mater., 10 (1), 2101344.

[37] Hohenberg, P., and Kohn, W., 1964, Inhomogeneous electron gas, Phys. Rev., 136 (3B), B864–B871.

[38] Hutama, A.S., Hijikata, Y., and Irle, S., 2017, Coupled cluster and density functional studies of atomic fluorine chemisorption on coronene as model systems for graphene fluorination, J. Phys. Chem. C, 121 (27), 14888–14898.

[39] Hutama, A.S., Huang, H., and Kurniawan, Y.S., 2019, Investigation of the chemical and optical properties of halogen-substituted N-methyl-4-piperidone curcumin analogs by density functional theory calculations, Spectrochim. Acta, Part A, 221, 117152.

[40] Pradipta, M.F., Pranowo, H.D., Alfiyah, V., and Hutama, A.S., 2021, Theoretical study of oxygen atom adsorption on a polycyclic aromatic hydrocarbon using density-functional theory, Indones. J. Chem., 21 (5), 1072–1085.

[41] Prasetyo, N., and Pambudi, F.I., 2021, Toward hydrogen storage material in fluorinated zirconium metal-organic framework (MOF-801): A periodic density functional theory (DFT) study of fluorination and adsorption, Int. J. Hydrogen Energy, 46 (5), 4222–4228.

[42] Wang, M., Yang, C.X., Leng, X.Y., Chen, Y., Yang, S.B., Li, W., Hong, W., and Xu, Y., 2024, The interface effect on the lithiation of silicon/graphene composites: The first principles study, Int. J. Quantum Chem., 124 (3), e27343.

[43] Hutama, A.S., Marlina, L.A., Chou, C.P., Irle, S., and Hofer, T.S., 2021, Development of density-functional tight-binding parameters for the molecular dynamics simulation of zirconia, yttria, and yttria-stabilized zirconia, ACS Omega, 6 (31), 20530–20548.

[44] Das, T., Di Liberto, G., and Pacchioni, G., 2022, Density functional theory estimate of halide perovskite band gap: When spin orbit coupling helps, J. Phys. Chem. C, 126 (4), 2184–2198.

[45] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., 2009, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21 (39), 395502.

[46] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (18), 3865–3868.

[47] Birch, F., 1947, Finite elastic strain of cubic crystals, Phys. Rev., 71 (11), 809–824.

[48] Agouri, M., Ouhenou, H., Waqdim, A., Zaghrane, A., Darkaoui, E., Abbassi, A., Manaut, B., Taj, S., and Driouich, M., 2024, Computational study of stability, photovoltaic, and thermoelectric properties of new inorganic lead-free halide perovskites, Europhys. Lett., 146 (1), 16005.

[49] Ati, A.H., Kadhim, A.A., Abdulhussain, A.A., Abed, W.A., Kadhim, K.F., Nattiq, M.A., and Khalaf Al-zyadi, J.M., 2024, Computational study of half-metallic behavior, optoelectronic and thermoelectric properties of new XAlN3 (X = K, Rb, Cs) perovskite materials, J. Phys. Chem. Solids, 188, 111899.

[50] Bouhmaidi, S., Pingak, R.K., Azouaoui, A., Harbi, A., Moutaabbid, M., and Setti, L., 2023, Ab initio study of structural, elastic, electronic, optical and thermoelectric properties of cubic Ge-based fluoroperovskites AGeF3 (A = K, Rb and Fr), Solid State Commun., 369, 115206.

[51] Jehan, A., Husain, M., Rahman, N., Tirth, V., Sfina, N., Elhadi, M., Shah, S.A., Azzouz-Rached, A., Uzair, M., Khan, A., and Khan, S.N., 2023, Investigating the structural, elastic, and optoelectronic properties of LiXF3 (X = Cd, Hg) using the DFT approach for high-energy applications, Opt. Quantum Electron., 56 (2), 169.

[52] Khan, W., 2024, Computational screening of BeXH3 (X: Al, Ga, and In) for optoelectronics and hydrogen storage applications, Mater. Sci. Semicond. Process., 174, 108221.

[53] Pingak, R.K., 2022., A DFT study of structural and electronic properties of cubic thallium based fluoroperovskites TlBF3 (B = Ge, Sn, Pb, Zn, Cd, Hg, Mg, Ca, Sr, Ba), Comput. Condens. Matter, 33, e00747.

[54] Rabbi, S.H., Asif, T.I., Ahmed, M.I., Saiduzzaman, M., and Islam, M., 2024, Unveiling the pressure-driven modulations in AGeF3 (A = Na, Tl) cubic perovskite halides for enhanced optoelectronic performance, Comput. Condens. Matter, 38, e00887.

[55] Song, X., Zhao, Y., Wang, X., Ni, J., Meng, S., and Dai, Z., 2023, Strong anharmonicity and high thermoelectric performance of cubic thallium-based fluoride perovskites TlXF3 (X = Hg, Sn, Pb), Phys. Chem. Chem. Phys., 25 (7), 5776–5784.

[56] Zhang, J., Chen, Y., Chen, S., Hou, J., Song, R., and Shi, Z.F., 2024, First-principles study of mechanical, electronic structure, and optical properties for cubic fluoroperovskite XMgF3 (X=Al, Ga, In, Tl) under high pressure, Mater. Sci. Semicond. Process., 174, 108158.

[57] Bouhmaidi, S., Marjaoui, A., Talbi, A., Zanouni, M., Nouneh, K., and Setti, L., 2022, A DFT study of electronic, optical and thermoelectric properties of Ge-halide perovskites CsGeX3 (X=F, Cl and Br), Comput. Condens. Matter, 31, e00663.

[58] Pingak, R.K., Bouhmaidi, S., and Setti, L., 2023, Investigation of structural, electronic, elastic and optical properties of Ge-halide perovskites NaGeX3 (X = Cl, Br and I): A first-principles DFT study, Physica B, 663, 415003.

[59] Pingak, R.K., Bouhmaidi, S., Setti, L., Pasangka, B., Bernandus, B., Sutaji, H.I., Nitti, F., and Ndii, M.Z., 2023, Structural, electronic, elastic, and optical properties of cubic BaLiX3 (X = F, Cl, Br, or I) perovskites: An ab-initio DFT Study, Indones. J. Chem., 23 (3), 843–862.

[60] Widya, W., Marlina, L.A., Hutama, A.S., and Prasetyo, N., 2023, Role of main group nonmetal dopants on the electronic properties of the TcS2 monolayer revealed by density functional theory, J. Electron. Mater., 52 (9), 5931–5945.

[61] Zelai, T., Rouf, S.A., Mahmood, Q., Bouzgarrou, S., Amin, M.A., Aljameel, A.I., Ghrib, T., Hegazy, H.H., and Mera, A., 2022, First-principles study of lead-free double perovskites Ga2PdX6 (X = Cl, Br, and I) for solar cells and renewable energy, J. Mater. Res. Technol., 16, 631–639.

[62] Born, M., 1940, On the stability of crystal lattices, I. Math. Proc. Cambridge Philos. Soc., 36 (2), 160–172.

[63] Shi, Y.R., Chen, C.H., Lou, Y.H., and Wang, Z.K., 2021, Strategies of perovskite mechanical stability for flexible photovoltaics, Mater. Chem. Front., 5 (20), 7467–7478.

[64] Roknuzzaman, M., Alarco, J.A., Wang, H., Du, A., Tesfamichael, T., and Ostrikov, K., 2019, Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics, Comput. Mater. Sci., 169, 109118.

[65] Ghaithan, H.M., Alahmed, Z.A., Qaid, S.M.H., and Aldwayyan, A.S., 2021, Density functional theory analysis of structural, electronic, and optical properties of mixed-halide orthorhombic inorganic perovskites, ACS Omega, 6 (45), 30752–30761.

[66] Pugh, S.F., 1954, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos. Mag. J. Sci., 45 (367), 823–843.

[67] Ahmad, S., Ur Rehman, J., Tahir, M.B., Alzaid, M., and Shahzad, K., 2023, Investigation of external isotropic pressure effect on widening of bandgap, mechanical, thermodynamic, and optical properties of rubidium niobate using first-principles calculations for photocatalytic application, Opt. Quantum Electron., 55 (4), 346.

[68] Tripkovic, V., Hansen, H.A., Garcia-Lastra, J.M., and Vegge, T., 2018, Comparative DFT+U and HSE study of the oxygen evolution electrocatalysis on perovskite oxides, J. Phys. Chem. C, 122 (2), 1135–1147.

[69] Råsander, M., and Moram, M.A., 2015, On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors, J. Chem. Phys., 143 (14), 144104.

[70] Ali, M.A., Alothman, A.A., Mushab, M., and Faizan, M., 2024, Optoelectronic and thermoelectric properties of novel stable lead-free cubic double perovskites A2NaIO6 (A = Ca, Sr) for renewable energy applications, Phys. Chem. Chem. Phys., 26 (4), 3614–3622.

[71] Ayyaz, A., Murtaza, G., Usman, A., Sfina, N., Alshomrany, A.S., Younus, S., Saleem, S., and Urwa-tul-Aysha, 2024, Evaluation of physical properties of A2ScCuCl6 (A = K, Rb, and Cs) double perovskites via DFT framework, J. Inorg. Organomet. Polym. Mater., Article in press.

[72] Bouhmaidi, S., Pingak, R.K., and Setti, L., 2023, First-principles investigation of electronic, elastic, optical and thermoelectric properties of strontium-based anti-perovskite Sr3MN (M= P and As) for potential applications in optoelectronic and thermoelectric devices, Moroccan J. Chem., 11 (4), 1254–1265.

[73] Harbi, A., and Moutaabbid, M., 2022, First-principles investigation of structural, elastic, thermoelectric, electronic, and optical properties of ordered double perovskite Ba2MWO6 (M = Mg, Zn, and Cd), J. Supercond. Novel Magn., 35 (11), 3447–3456.

[74] Hayat, M.S., and Khalil, R.M.A., 2024, Computational predictions of optoelectronic energy materials Cs2SiBr6 Cs2GeBr6 & Cs2SnBr6 for phenomenal photovoltaic applications; A first principles study, Comput. Theor. Chem., 1235, 114532.

[75] Assiouan, K., Marjaoui, A., EL Khamkhami, J., Zanouni, M., Ziani, H., Bouchrit, A., and Achahbar, A., 2024, Theoretical investigation of Rb2AuBiX6 (X=Br, cl, F) double perovskite for thermoelectric and optoelectronic applications, J. Phys. Chem. Solids, 188, 111890.

[76] Bouhmaidi, S., Harbi, A., Pingak, R.K., Azouaoui, A., Moutaabbid, M., and Setti, L., 2023, First-principles calculations to investigate lead-free double perovskites CsInSbAgX6 (X = Cl, Br and I) for optoelectronic and thermoelectric applications, Comput. Theor. Chem. 1227, 114251.

[77] Harbi, A., Bouhmaidi, S., Pingak, R.K., Setti, L., and Moutaabbid, M., 2023, First-principles calculations to investigate optoelectronic, thermoelectric and elastic properties of novel lead-free halide perovskites CsRbPtX6 (X = Cl, Br and I) compounds for solar cells applications, Physica B, 668, 415242.

[78] Hemidi, D., Seddik, T., Benmessabih, T., Batouche, M., Ouerghui, W., Abdallah, H.B., Surucu, G., and Ahmad, S., 2023, Is Rb2PtX6 (X = Cl, Br, and I) a promising Pb-free vacancy-ordered double perovskites for photoelectrochemical water splitting applications?, Appl. Phys. A, 129 (11), 762.

[79] Murtaza, H., Ain, Q., Munir, J., Ghaithan, H.M., Ahmed Ali Ahmed, A., Aldwayyan, A.S., and Qaid, S.M.H., 2024, Effect of bandgap tunability on the physical attributes of potassium-based K2CuBiX6 (X = I, Br, Cl) double perovskites for green technologies, Inorg. Chem. Commun., 162, 112206.

[80] Ou, T., Jiang, W., Zhuang, Q., Yan, H., Feng, S., Sun, Y., Li, P., and Ma, X., 2023, First-principles study of electronic and optical properties of lead-free halide double perovskite Cs2RbSbX6 (X=Cl, Br, I), Physica B, 665, 415050.

[81] Peng, C., Wei, J., Wu, J., Ma, Z., Qiao, C., and Zeng, H., 2024, Modulation mechanism of electronic and optical properties of Cs2SnX6 (X = Cl, Br and I) under hydrostatic or uniaxial pressure, Funct. Mater. Lett., 17 (3), 2451012.

[82] Johannes, A.Z., Pingak, R.K., and Bukit, M., 2020, Tauc plot software: Calculating energy gap values of organic materials based on Ultraviolet-Visible absorbance spectrum, IOP Conf. Ser.: Mater. Sci. Eng., 823 (1), 012030.

[83] Reddy, R.R., Gopal, K.R., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Balakrishnaiah, G., and Kumar, M.R., 2009, Interrelationship between structural, optical, electronic and elastic properties of materials, J. Alloys Compd., 473 (1), 28–35.

[84] Li, K., Kang, C., and Xue, D., 2012, Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys, Mater. Res. Bull., 47 (10), 2902–2905.

[85] Biswas, A., Alam, M.S., Sultana, A., Ahmed, T., Saiduzzaman, M., and Hossain, K.M., 2021, Effects of Bi and Mn codoping on the physical properties of barium titanate: Investigation via DFT method, Appl. Phys. A, 127 (12), 939.

[86] Penn, D.R., 1962, Wave-number-dependent dielectric function of semiconductors, Phys. Rev., 128 (5), 2093–2097.

[87] Lamichhane, A., and Ravindra, N.M., 2020, Energy gap-refractive index relations in perovskites, Materials, 13 (8), 1917.

[88] Hassan, B., Irfan, M., Aslam, M., and Buntov, E., 2024, The electronic structure, electronic charge density, optical and thermoelectric properties of Mo and Rh based triple perovskite semiconductors Ba3CaNb2O9 for low-cost energy technologies, Opt. Quantum Electron., 56 (3), 398.

[89] Rehman, M.A., ur Rehman, Z., Usman, M., Farrukh, U., Alomar, S.Y., Ahmad, N., Ahmad, T., Farid, A., and Hamad, A., 2024, Pressure-induced modulation of structural, electronic, and optical properties of LiCaF3 fluoro perovskite for optoelectronic applications, Solid State Commun., 380, 115447.

[90] Valizadeh, S., Shokri, A., Sabouri-Dodaran, A., Fough, N., and Muhammad-Sukki, F., 2024, Investigation of efficiency and temperature dependence in RbGeBr3-based perovskite solar cell structures, Results Phys., 57, 107351.

[91] Ajay, G., Ashwin, V., Sirajuddeen, M.M.S., and Alam, A., 2024, Theoretical investigation of structural, electronic, elastic, and optical properties of rubidium-based perovskites RbSrX3 (X = Cl, Br) for optoelectronic device applications – A DFT study, Physica B, 682, 415858.

[92] Liang, Y., Cui, X., Li, F., Stampfl, C., Ringer, S.P., and Zheng, R., 2021, First-principles investigation of intrinsic point defects in perovskite CsSnBr3, Phys. Rev. Mater., 5 (3), 035405.

[93] Liang, Y., Cui, X., Li, F., Stampfl, C., Huang, J., Ringer, S.P., and Zheng, R., 2021, Hydrogen-anion-induced carrier recombination in MAPbI3 perovskite solar cells, J. Phys. Chem. Lett., 12 (43), 10677–10683.

[94] Liang, Y., Cui, X., Li, F., Stampfl, C., Ringer, S.P., Yang, X., Huang, J., and Zheng, R., 2023, Origin of enhanced nonradiative carrier recombination induced by oxygen in hybrid Sn perovskite, J. Phys. Chem. Lett., 14 (12), 2950–2957.

[95] Liang, Y., Cui, X., Li, F., Stampfl, C., Ringer, S.P., and Zheng, R., 2022, Atomic and molecular hydrogen impurities in hybrid perovskite solar cells, J. Phys. Chem. C, 126 (4), 1721–1728.



DOI: https://doi.org/10.22146/ijc.94870

Article Metrics

Abstract views : 5615 | views : 1273


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.