Freeze-Drying Microencapsulation of Ruellia tuberosa L. Extracts: A Comparative Study Using Different Polymers as Encapsulants
Firza Rajasa Gunawan(1), Siti Mariyah Ulfa(2), Anna Safitri(3*)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia; Research Center of SMONAGENES (Smart Molecules of Natural Genetic Resources), Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(*) Corresponding Author
Abstract
Ruellia tuberosa L. leaf and root extracts have been investigated for their biological activity and potential health advantages, including their antidiabetic, antioxidant, and antidiuretic qualities. This research evaluates the freeze-drying microencapsulation of R. tuberosa L. extracts using gum Arabic, maltodextrin, and their combination as coating materials. The resulting microcapsules were tested for encapsulation efficiency, biological activity, and controlled release. Characterization techniques included scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and particle size analysis (PSA). The choice of encapsulant significantly influenced encapsulation efficiency, morphology, and biological activity. Microcapsules using a combination of gum Arabic and maltodextrin exhibited more spherical shapes and smaller particle sizes than those using either material alone. Alpha-amylase inhibition tests showed that microcapsules effectively inhibit the enzyme, with the coating combination performing best, followed by gum Arabic and then maltodextrin. All microcapsules exhibit moderate antioxidant activity, again in the same order. The active compound release was greater at pH 7.4 compared to pH 2.2 from 0 to 120 min. Therefore, freeze-drying microencapsulation with biodegradable polymers is a viable method for delivering the health benefits of R. tuberosa L. extracts, yielding a convenient powder form suitable for drug delivery systems.
Keywords
Full Text:
Full Text PDFReferences
[1] Novaryatiin, S., and Indah, I., 2019, The medicinal plants used in Anjir Pulang Pisau, Central Kalimantan-Indonesia, Pharmacogn. J., 11 (6), 1572–1579.
[2] Ullah, S., and Hyun, C.G., 2020, Evaluation of total flavonoid, total phenolic contents, and antioxidant activity of strychnobiflavone, Indones. J. Chem., 20 (3), 716–721.
[3] Ahmad Khan, M.S., and Ahmad, I., 2019, “Herbal Medicine: Current Trends and Future Prospects” in New Look to Phytomedicine, Eds., Ahmad Khan, M.S., Ahmad, I., and Chattopadhyay, D., Academic Press, Cambridge, MA, US, 3–13.
[4] Safitri, A., Roosdiana, A., Kurnianingsih, N., Fatchiyah, F., Mayasari, E., and Rachmawati, R., 2022, Microencapsulation of Ruellia tuberosa L. aqueous root extracts using chitosan-sodium tripolyphosphate and their in vitro biological activities, Scientifica, 2022 (1), 9522463.
[5] Annunziata, G., Jiménez-García, M., Capó, X., Moranta, D., Arnone, A., Tenore, G.C., Sureda, A., and Tejada, S., 2020, Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes, Food Chem. Toxicol., 139, 111248.
[6] Xu, J.H., Lo, Y.M., Chang, W.C., Huang, D.W., Wu, J.S.B., Jhang, Y.Y., Huang, W.C., Ko, C.Y., and Shen, S.C., 2020, Identification of bioactive components from Ruellia tuberosa L. on improving glucose uptake in TNF-α-induced insulin-resistant mouse FL83B hepatocytes, Evidence-Based Complementary Altern. Med., 2020 (1), 6644253.
[7] Annisa, C., Prasetyawan, S., and Safitri, A., 2022, Co-microencapsulation of Ruellia tuberosa L. and Cosmos caudatus K. extracts for pharmaceutical applications, Makara J. Sci., 26 (2), 96–106.
[8] Ahmad, A.R., Elya, B., and Mun’im, A., 2017, Antioxidant activity and isolation of xanthine oxidase inhibitor from Ruellia tuberosa L. leaves, Pharmacogn. J., 9 (5), 607–610.
[9] Roosdiana, A., Permata, F.S., Fitriani, R.I., Umam, K., and Safitri, A., 2020, Ruellia tuberosa L. extract improves histopathology and lowers malondialdehyde levels and TNF alpha expression in the kidney of streptozotocin-induced diabetic rats, Vet. Med. Int., 2020 (1), 8812758.
[10] Bhalani, D.V., Nutan, B., Kumar, A., and Singh Chandel, A.K., 2022, Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics, Biomedicines, 10 (9), 2055.
[11] Corrêa-Filho, L.C., Moldão-Martins, M., and Alves, V.D., 2019, Advances in the application of microcapsules as carriers of functional compounds for food products, Appl. Sci., 9 (3), 571.
[12] Calderón-Oliver, M., and Ponce-Alquicira, E., 2022, The role of microencapsulation in food application, Molecules, 27 (5), 1499.
[13] Guo, J., Li, P., Kong, L., and Xu, B., 2020, Microencapsulation of curcumin by spray drying and freeze drying, LWT, 132, 109892.
[14] Yaumi, A.L., Murtala, A.M., Muhd, H.D., and Saleh, F.M., 2016, Determination of physiochemical properties of gum Arabic as a suitable binder in emulsion house paint, Int. J. Environ., 5 (1), 67–78.
[15] Lourenço, S.C., Moldão-Martins, M., and Alves, V.D., 2020, Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and Arabic gum as wall matrices, Foods, 9 (6), 718.
[16] Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., LewisOscar, F., and Pugazhendhi, A., 2019, Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation, J. Photochem. Photobiol., B, 192, 74–82.
[17] Ćorković, I., Gašo-Sokač, D., Pichler, A., Šimunović, J., and Kopjar, M., 2022, Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase, Life, 12 (11), 1692.
[18] Zhu, J., Chen, C., Zhang, B., and Huang, Q., 2020, The inhibitory effects of flavonoids on α-amylase and α-glucosidase, Crit. Rev. Food Sci. Nutr., 60 (4), 695–708.
[19] Yang, J., Wang, X., Zhang, C., Ma, L., Wei, T., Zhao, Y., and Peng, X., 2021, Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose, Food Chem., 347, 129056.
[20] Karrar, E., Mahdi, A.A., Sheth, S., Mohamed Ahmed, I.A., Manzoor, M.F., Wei, W., and Wang, X., 2021, Effect of maltodextrin combination with gum Arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method, Int. J. Biol. Macromol., 171, 208–216.
[21] Archaina, D., Vasile, F., Jiménez-Guzmán, J., Alamilla-Beltrán, L., and Schebor, C., 2019, Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum Arabic mixtures, J. Food Process. Preserv., 43 (9), e14065.
[22] Barthold, S., Hittinger, M., Primavessy, D., Zapp, A., Groß, H., and Schneider, M., 2019, Preparation of maltodextrin nanoparticles and encapsulation of bovine serum albumin – Influence of formulation parameters, Eur. J. Pharm. Biopharm., 142, 405–410.
[23] Akhavan Mahdavi, S., Jafari, S.M., Assadpoor, E., and Dehnad, D., 2016, Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin, Int. J. Biol. Macromol., 85, 379–385.
[24] Lee, J., Noh, S., Lim, S., and Kim, B., 2021, Plant extracts for type 2 diabetes: From traditional medicine to modern drug discovery, Antioxidants, 10 (1), 81.
[25] Safitri, A., Roosdiana, A., Hitdatania, E., and Damayanti, S.A., 2022, In vitro alpha-amylase inhibitory activity of microencapsulated Cosmos caudatus Kunth extracts, Indones. J. Chem., 22 (1), 212–222.
[26] Kumar Singla, R., Singh, R., and Dubey, A.K., 2016, Important aspects of post-prandial antidiabetic drug, acarbose, Curr. Top. Med. Chem., 16 (23), 2625–2633.
[27] Jelic, M.D., Mandic, A.D., Maricic, S.M., and Srdjenovic, B.U., 2021, Oxidative stress and its role in cancer, J. Cancer Res. Ther., 17 (1), 22–28.
[28] Malki, F., Alouache, A., and Krimat, S., 2023, Effects of various parameters on the antioxidant activities of the synthesized heterocyclic pyrimidinium betaines, Indones. J. Chem., 23 (1), 90–100.
[29] Gulcin, İ., 2020, Antioxidants and antioxidant methods: An updated overview, Arch. Toxicol., 94 (3), 651–715.
[30] Pertiwi, A.K., Annisa, C., Ningsih, Z., and Safitri, A., 2023, Microencapsulation of Ruellia tuberosa L. extracts using alginate: Preparation, biological activities, and release, Indones. J. Chem., 23 (2), 321–332.
[31] Laureanti, E.J.G., Paiva, T.S., de Matos Jorge, L.M., and Jorge, R.M.M., 2023, Microencapsulation of bioactive compound extracts using maltodextrin and gum Arabic by spray and freeze-drying techniques, Int. J. Biol. Macromol., 253, 126969.
[32] Lang, Y., Gao, N., Zang, Z., Meng, X., Lin, Y., Yang, S., Yang, Y., Jin, Z., and Li, B., 2024, Classification and antioxidant assays of polyphenols: A review, J. Future Foods, 4 (3), 193–204.
[33] Ullah, A., Munir, S., Badshah, S.L., Khan, N., Ghani, L., Poulson, B.G., Emwas, A.H., and Jaremko, M., 2020, Important flavonoids and their role as a therapeutic agent, Molecules, 25 (22), 5243.
[34] Fidrianny, I., Annisa, A., and Ruslan, K., 2016, Antioxidant activities of Arabica green coffee from three regions using ABTS and DPPH assays, Asian J. Pharm. Clin. Res., 9 (2), 189–193.
[35] Lengyel, M., Kállai-Szabó, N., Antal, V., Laki, A.J., and Antal, I., 2019, Microparticles, microspheres, and microcapsules for advanced drug delivery, Sci. Pharm., 87 (3), 20.
[36] Hu, X., Wang, Y., Zhang, L., and Xu, M., 2020, Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols, Food Chem., 306, 125632.
[37] Hu, X., Wang, Y., Zhang, L., and Xu, M., 2020, Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C, Carbohydr. Polym., 234, 115920.
[38] Ribeiro, A.M., Shahgol, M., Estevinho, B.N., and Rocha, F., 2020, Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum Arabic, starch and maltodextrin, Food Hydrocolloids, 108, 106029.
[39] Mohammadalinejhad, S., and Kurek, M.A., 2021, Microencapsulation of anthocyanins-Critical review of techniques and wall materials, Appl. Sci., 11 (9), 3936.
[40] Nandiyanto, A.B.D., Ragadhita, R., and Fiandini, M., 2023, Interpretation of Fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition, Indones. J. Sci. Technol., 8 (1), 113–126.
[41] de la Cruz Pech-Canul, A., Ortega, D., García-Triana, A., González-Silva, N., and Solis-Oviedo, R.L., 2020, A brief review of edible coating materials for the microencapsulation of probiotics, Coatings, 10 (3), 197.
[42] Nandiyanto, A.B.D., Oktiani, R., and Ragadhita, R., 2019, How to read and interpret FTIR spectroscope of organic material, Indones. J. Sci. Technol., 4 (1), 97–118.
DOI: https://doi.org/10.22146/ijc.95246
Article Metrics
Abstract views : 285 | views : 215Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.