Potential of Favipiravir Analogs as SARS-CoV-2 RdRp Inhibitors: Synthesis and In Silico Studies
Anita Alni(1*), Angela Lokitha(2), Yusuf Eka Maulana(3), Elvira Hermawati(4), Ade Danova(5)
(1) Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(2) Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(3) Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(4) Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(5) Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(*) Corresponding Author
Abstract
The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the lethal infectious disease known as COVID-19. The RNA-dependent RNA polymerase (RdRp) is a pivotal component that facilitates the translation of viral RNA into viral proteins. Therefore, our study aimed to synthesize new inhibitors from favipiravir (FVP) analogs by modifying the hydrophobicity through a nucleophilic aromatic substitution at the C-6 position of the pyrazine ring with alkoxy groups under acidic conditions. Moreover, the synthesized FVP analogs were investigated for their antiviral potency against SARS-CoV-2 RdRp through in silico studies. Five FVP analogs (3–7), including four known (3, 4, 5, 7) and one new (6), were successfully synthesized with yields ranging from 2.3 to 32.7%. All favipiravir analogs could be drug-likeness with inactive hepatotoxicity and carcinogenicity. The docking study showed that compound 5 exhibited a strong binding affinity with a binding score of −7.00 kcal/mol by interacting with the catalytic site residues of Asp618 and Asp760 of SARS-CoV-2 RdRp. Furthermore, the molecular dynamics simulation revealed that the compound 5 was stable, as indicated by RMSD, Rg, solute H-bonds, RMSF, and binding energy calculations. Thus, these results suggest that the FVP-RTP analog (5) may have antiviral potency by targeting SARS-CoV-2 RdRp.
Keywords
References
[1] Perlman, S., 2020, Another decade, another coronavirus, N. Engl. J. Med., 382 (2), 760–762.
[2] Zhang, T., Wu, Q., and Zhang, Z., 2020, Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak, Curr. Biol., 30 (7), 1346–1351.e2.
[3] Khailany, R.A., Safdar, M., and Ozaslan, M., 2020, Genomic characterization of a novel SARS-CoV-2, Gene Rep., 19, 100682.
[4] Wang, C., Liu, Z., Chen, Z., Huang, X., Xu, M., He, T., and Zhang, Z., 2020, The establishment of reference sequence for SARS-CoV-2 and variation analysis, J. Med. Virol., 92 (6), 667–674.
[5] Hillen, H.S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., and Cramer, P., 2020, Structure of replicating SARS-CoV-2 polymerase, Nature, 584 (7819), 154–156.
[6] Arba, M., Nur-Hidayat, A., Usman, I., Yanuar, A., Wahyudi, S.T., Fleischer, G., Brunt, D.J., and Wu, C., 2020, Virtual screening of the Indonesian medicinal plant and zinc databases for potential inhibitors of the RNA-dependent RNA polymerase (RdRp) of 2019 novel coronavirus, Indones. J. Chem., 20 (6), 1430–1440.
[7] Kokic, G., Hillen, H.S., Tegunov, D., Dienemann, C., Seitz, F., Schmitzova, J., Farnung, L., Siewert, A., Höbartner, C. and Cramer, P., 2021, Mechanism of SARS-CoV-2 polymerase stalling by remdesivir, Nat. Commun., 12 (1), 279.
[8] McMahon, J.H., Lau, J.S.Y., Coldham, A., Roney, J., Hagenauer, M., Price, S., Bryant, M., Garlick, J., Paterson, A., Lee, S.J., O'Bryan, J., Hearps, A., Tachedjian, G., Pinskier, H., Phillips, C., Garrow, S., Pinskier, N., Melvin, R., Blakeway, L., Wisniewski, J.A., Byers, S., Badoordeen, G.Z., Pereira, S., Pragastis, K., Trubiano, J.A., Chua, K.Y.L., Kainer, M., Molton, J.S., Gardiner, B.J., Pierce, A.B., Cheng, A., Rogers, B.A., and Peleg, A.Y., 2022, Favipiravir in early symptomatic COVID-19, a randomised placebo-controlled trial, EClinicalMedicine, 54, 101703.
[9] Watanabe, M., 2020, The COVID-19 pandemic in Japan, Surg. Today, 50 (8), 787–793.
[10] Kumar, R., Gupta, N., Kodan, P., Mittal, A., Soneja, M., and Wig, N., 2020, Battling COVID-19: Using old weapons for a new enemy, Trop. Dis., Travel Med. Vaccines, 6 (1), 6.
[11] Yavuz, S., and Ünal, S., 2020, Antiviral treatment of COVID-19, Turk. J. Med. Sci., 50, 611–619.
[12] Celik, I., Erol, M., and Tallei, T.E., 2024, "Chapter 39 - In silico studies of established antivirals targeting the SARS-CoV-2 RNA-dependent RNA polymerase" in Features, Transmission, Detection, and Case Studies in COVID-19, Eds. Rajendram, R., Preedy, V.R., and Patel, V.B., Academic Press, Cambridge, MA, US, 475–487.
[13] Hayden, F.G., Lenk, R.P., Stonis, L., Oldham-Creamer, C., Kang, L.L., and Epstein, C., 2022, Favipiravir treatment of uncomplicated influenza in adults: results of two phase 3, randomized, double-blind, placebo-controlled trials, J. Infect. Dis., 226 (10), 1790–1799.
[14] Kaptein, S.J., Jacobs, S., Langendries, L., Seldeslachts, L., ter Horst, S., Liesenborghs, L., Hens, B., Vergote, V., Heylen, E., Barthelemy, K., Maas, E., De Keyzer, C., Bervoets, L., Rymenants, J., Van Buyten, T., Zhang, X., Abdelnabi, R., Pang, J., Williams, R., Thibaut, H.J., Dallmeier, K., Boudewijns, R., Wouters, J., Augustijns, P., Verougstraete, N., Cawthorne, C., Breuer, J., Solas, C., Weynand, B., Annaert, P., Spriet, I., Vande Velde, G., Neyts, J., Rocha-Pereira, J., and Delang, L., 2020, Favipiravir at high doses has potent antiviral activity in SARS-CoV-2−infected hamsters, whereas hydroxychloroquine lacks activity, Proc. Natl. Acad. Sci. U. S. A., 117 (43), 26955–26965.
[15] Latosińska, M., and Latosińska, J.N., 2024, Favipiravir analogues as inhibitors of SARS-CoV-2 RNA-dependent RNA Polymerase, combined quantum chemical modeling, quantitative structure–property relationship, and molecular docking study, Molecules, 29 (2), 441.
[16] Song, Y., Xu, L., Wang, B., Zhang, D., and Wang, H., 2021, Convenient one-step synthesis of alkoxy substituted pyrazine derivatives, Results Chem., 3, 100191.
[17] Daina, A., Michielin, O., and Zoete, V., 2017, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (1), 42717.
[18] Banerjee, P., Kemmler, E., Dunkel, M., and Preissner, R., 2024, ProTox 3.0: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 52, W513–W520.
[19] Trott, O., and Olson, A.J., 2010, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31 (2), 455–461.
[20] Dallakyan, S., and Olson, A.J., 2015, "Small-Molecule Library Screening by Docking with PyRx" in Chemical Biology: Methods and Protocols, Eds. Hempel, J.E., Williams, C.H., and Hong, C.C., Humana Press, New York, NY, US, 243–250.
[21] Khatimah, H., Hermawati, E., Mulya, F., Abdjan, M.I., Kuamit, T., and Danova, A., 2025, A new ursane-type pentacyclic triterpenoid from the tree bark of Sandoricum koetjape: Antibacterial, DFT, and molecular docking study, Int. J. Mol. Sci., 26 (21), 10389.
[22] Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., and Kollman, P., 2003, A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations, J. Comput. Chem., 24 (16), 1999–2012.
[23] Krieger, E., Darden, T., Nabuurs, S.B., Finkelstein, A., and Vriend, G., 2004, Making optimal use of empirical energy functions: Force-field parameterization in crystal space, Proteins: Struct., Funct., Bioinf., 57 (4), 678–683.
[24] Krieger, E., and Vriend, G., 2015, New ways to boost molecular dynamics simulations, J. Comput. Chem., 36 (13), 996–1007.
[25] Banik, S., Adarsh, D.R., and Reddy, B.V.S., 2023, Three-step process for the synthesis of favipiravir, Results Chem., 5, 100895.
[26] Fuentes, G., García, M.F., Cerecetto, H., Álvarez, G., Couto, M., and Romero, A.H., 2023, One-step synthesis of favipiravir from Selectfluor® and 3-hydroxy-2-pyrazinecarboxamide in an ionic liquid, Org. Biomol. Chem., 21 (17), 3660–3668.
[27] Rachmadhaningtiyas, D.A., Hermawati, E., Juliawaty, L.D., and Wahyuningrum, D., 2023, Direct synthesis of 8-fluorocaffeine and its transformation to 8-substituted caffeine, ChemistrySelect, 8, e202303074.
[28] Romero, A.H., Fuentes, G., Suescun, L., Piro, O., Echeverría, G., Gotopo, L., Pezaroglo, H., Álvarez, G., Cabrera, G., Cerecetto, H., and Couto, M., 2023, Tautomerism and rotamerism of favipiravir and halogenated analogues in solution and in the solid state, J. Org. Chem., 88 (15), 10735–10752.
[29] Durán-Iturbide, N.A., Díaz-Eufracio, B.I., and Medina-Franco, J.L., 2020, In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM, ACS Omega, 5 (26), 16076–16084.
[30] Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., and Huang, Z., 2020, Computational approaches in preclinical studies on drug discovery and development, Front. Chem., 8, 726.
[31] Domínguez-Villa, F.X., Durán-Iturbide, N.A., and Ávila-Zárraga, J.G., 2021, Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease, Bioorg. Chem., 106, 104497.
[32] Shityakov, S., and Förster, C., 2014, In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter, Adv. Appl. Bioinf. Chem., 7, 23–36.
[33] Sugathan, K.J., Sreekumar, S., and Kamalan, B.C., 2024, In silico screening and identification of lead molecules from Garcinia gummi-gutta with multitarget activity against SARS-CoV-2, J. Appl. Pharm. Sci., 14 (7), 124–132.
[34] Mishra, A., and Rathore, A.S., 2022, RNA dependent RNA polymerase (RdRp) as a drug target for SARS-CoV2, J. Biomol. Struct. Dyn., 40 (13), 6039–60351.
[35] Wu, Y., Chang, K.Y., Lou, L., Edwards, L.G., Doma, B.K., and Xie, Z.R., 2020, In silico identification of drug candidates against COVID-19, Inf. Med. Unlocked, 21, 100461.
[36] Brunt, D., Lakernick, P.M., and Wu, C., 2022, Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations, Sci. Rep., 12 (1), 19986.
[37] Hollingsworth, S.A., and Dror, R.O., 2018, Molecular dynamics simulation for all, Neuron, 99 (6), 1129–1143.
%;font-family:"Arial",sans-serif;mso-fareast-font-family:Aptos;mso-fareast-theme-font:
minor-latin;mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:
AR-SA'>
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.












