Extraction and Characterization of Phenolic Compounds from the Stem Bark of Sonneratia caseolaris (Lythraceae) and Their Potential Antibacterial Activity

https://doi.org/10.22146/ijc.98976

Harizon Harizon(1), Dikdik Kurnia(2), Dadan Sumiarsa(3), Tati Herlina(4), Siska Elisahbet Sinaga(5), Yoshihito Shiono(6), Mohamad Nurul Azmi(7), Unang Supratman(8*)

(1) Faculty of Teacher Training and Education, Universitas Jambi, Mendalo Indah, Jambi 36361, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(5) Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(6) Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, 1-4-12 Kojikawa-machi, Tsuruoka, Yamagata 997-8555, Japan
(7) School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
(8) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(*) Corresponding Author

Abstract


The ethyl acetate fraction separated from the stembark of Sonneratia caseolaris retrieved three phenolic compounds, including quercetin-3-O-glucoside (1), quercetin (2), and 1-O-(2,4-dihydroxybenzoyl)-β-D-glucopyranose (3). For the first time, compounds 1 and 3 were discovered from Sonneratia genus. Data from various spectroscopic techniques, including mass spectroscopy and one- and two-dimensional NMR, were used to identify their chemical structures. Antibacterial activity has also been assessed for all compounds against Staphylococcus aureus ATCC 25175 and Streptococcus mutans ATCC 6538. Compounds 13 displayed varying levels of antibacterial activity against S. aureus and S. mutans. However, all compounds exhibited lower efficacy compared to the control, with their minimum inhibitory concentration (MIC) values ranging from 71.25 to greater than 100 µg/mL. This study provides a foundation for optimizing S. caseolaris phenolic compounds as antibacterial agents and highlights the need for comparative studies within the Sonneratia genus to identify potent bioactive candidates through structural modification or synergistic approaches.


Keywords


antibacterial activity; phenolic compounds; Sonneratia caseolaris; Staphylococcus aureus; Streptococcus mutans



References

[1] Li, F., Liu, J., Tang, S., Yan, J., Chen, H., Li, D., and Yan, X., 2021, Quercetin regulates inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells by promoting PVT1 expression, Acta Histochem., 123 (8), 151819.

[2] Sadeghi, A., Rajabiyan, A., Nabizade, N., Meygolinezhad, N., and Ahmady, A.Z., 2024, Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies, Int. J. Biol. Macromol., 266, 131147.

[3] Wang, S., Yao, J., Zhou, B., Yang, J., Chaudry, M.T., Wang, M., and Yin, W., 2018, Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro, J. Food Prot., 81 (1), 68–78.

[4] Hossain, S.J., Islam, M.R., Pervin, T., Iftekharuzzaman, M., Hamdi, O.A., Mubassara, S., Saifuzzaman, M., and Shilpi, J.A., 2017, Antibacterial, anti-diarrhoeal, analgesic, cytotoxic activities, and GC-MS profiling of Sonneratia apetala (Buch.-Ham.) seed, Prev. Nutr. Food Sci., 22 (3), 157–165.

[5] Yi, X., Jiang, S., Qin, M., Liu, K., Cao, P., Chen, S., Deng, J., and Gao, C., 2020, Compounds from the fruits of mangrove Sonneratia apetala: Isolation, molecular docking and antiaging effects using a Caenorhabditis elegans model, Bioorg. Chem., 99, 103813.

[6] Katsutani, K., Sugimoto, S., Yamano, Y., Otsuka, H., Matsunami, K., and Mizuta, T., 2020, Eudesmane-type sesquiterpene glycosides: Sonneratiosides A–E and eudesmol β-d-glucopyranoside from the leaves of Sonneratia alba, J. Nat. Med., 74 (1), 119–126.

[7] Harizon, H., Pujiastuti, B., Kurnia, D., Sumiarsa, D., Shiono, Y., and Supratman, U., 2015, Antibacterial triterpenoids from the bark of Sonneratia alba (Lythraceae), Nat. Prod. Commun., 10 (2), 277–280.

[8] Liu, B., Wang, X., Wang, Y., Chen, X., Jin, X., and Luo, X., 2023, Review of compounds and activities from mangrove Sonneratia genus and their endophytes, J. Holistic Integr. Pharm., 4 (3), 218–227.

[9] Rahim, A.C., and Abu Bakar, M.F., 2018, “Pidada—Sonneratia caseolaris” in Exotic Fruits, Eds. Rodrigues, S., de Oliveira Silva, E., and de Brito, E.S., Academic Press, Cambridge, MA, US, 327–332.

[10] Kjer, J., Wray, V., Edrada-Ebel, R., Ebel, R., Pretsch, A., Lin, W., and Proksch, P., 2009, Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba, J. Nat. Prod., 72 (11), 2053–2057.

[11] Nguyen, T.H.T., Pham, H.V.T., Pham, N.K.T., Quach, N.D.P., Pudhom, K., Hansen, P.E., and Nguyen, K.P.P., 2015, Chemical constituents from Sonneratia ovata Backer and their in vitro cytotoxicity and acetylcholinesterase inhibitory activities, Bioorg. Med. Chem. Lett., 25 (11), 2366–2371.

[12] Jia, S., Su, X., Yan, W., Wu, M., Wu, Y., Lu, J., He, X., Ding, X., and Xue, Y., 2021, Acorenone C: A new spiro-sesquiterpene from a mangrove-associated fungus, Pseudofusicoccum sp. J003, Front. Chem., 9, 780304.

[13] Patra, J.K., Das, S.K., and Thatoi, H., 2015, Phytochemical profiling and bioactivity of a mangrove plant, Sonneratia apetala, from Odisha Coast of India, Chin. J. Integr. Med., 21 (4), 274–285.

[14] Ebrahim, W., Kjer, J., El Amrani, M., Wray, V., Lin, W., Ebel, R., Lai, D., and Proksch, P., 2012, Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris, Mar. Drugs, 10 (5), 1081–1091.

[15] Rönsberg, D., Debbab, A., Mándi, A., Wray, V., Dai, H., Kurtán, T., Proksch, P., and Aly, A.H., 2013, Secondary metabolites from the endophytic fungus Pestalotiopsis virgatula isolated from the mangrove plant Sonneratia caseolaris, Tetrahedron Lett., 54 (25), 3256–3259.

[16] Sinaga, S.E., Fajar, M., Mayanti, T., and Supratman, U., 2023, Bioactivities screening and elucidation of terpenoid from the stembark extracts of Lansium domesticum Corr. cv. Kokosan (Meliaceae), Sustainability, 15 (3), 2140.

[17] Sarkar, S., Chaudhuri, B.N., Guchhait, P., and Das, S., 2023, Antibacterial and antifungal activities of Avicennia marina extract against various multiple drug resistant microorganisms, Saudi J. Biomed. Res., 8 (5), 57–62.

[18] Suzuki, T., Ariefta, N.R., Koseki, T., Furuno, H., Kwon, E., Momma, H., Harneti, D., Maharani, R., Supratman, U., Kimura, K., and Shiono, Y., 2019, New polyketides, paralactonic acids A–E produced by Paraconiothyrium sp. SW-B-1, an endophytic fungus associated with a seaweed, Chondrus ocellatus Holmes, Fitoterapia, 132, 75–81.

[19] Kong, N.N., Fang, S.T., Wang, J.H., Wang, Z.H., and Xia, C.H., 2014, Two new flavonoid glycosides from the halophyte Limonium franchetii, J. Asian Nat. Prod. Res., 16 (4), 370–375.

[20] Mohammed, R.S., Abou Zeid, A.H., El-Kashoury, E.A., Sleem, A.A., and Waly, D.A., 2014, A new flavonol glycoside and biological activities of Adenanthera pavonina L. leaves, Nat. Prod. Res., 28 (5), 282–289.

[21] Parvez, M.K., Al-Dosari, M.S., Arbab, A.H., Al-Rehaily, A.J., and Abdelwahid, M.A.S., 2020, Bioassay-guided isolation of anti-hepatitis B virus flavonoid myricetin-3-O-rhamnoside along with quercetin from Guiera senegalensis leaves, Saudi Pharm. J., 28 (5), 550–559.

[22] Chen, L., Li, J., Ke, X., Sun, C., Huang, X., Jiang, P., Feng, F., Liu, W., and Zhang, J., 2018, Chemical profiling and the potential active constituents responsible for wound healing in Periploca forrestii Schltr, J. Ethnopharmacol., 224, 230–241.

[23] Suga, A., Takaishi, Y., and Nakagawa, H., 2005, Chemical constituents from fruits and seeds of Myrica rubra (Myricaceae), Nat. Med., 59 (2), 70–75.



DOI: https://doi.org/10.22146/ijc.98976

Article Metrics

Abstract views : 0 | views : 0 | views : 0


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.