Introducing Cu(II) onto SiO2-TiO2 with Rice Husk Ash as the Source of Silica and Its Catalytic Activity for Kumada Cross-coupling Reaction to Produce Biphenyl Compound
Dewi Agustiningsih(1), Nuryono Nuryono(2), Sri Juari Santosa(3), Eko Sri Kunarti(4*)
(1) Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Urquhart, L., 2018, Top drugs and companies by sales in 2017, Nat. Rev. Drug Discovery, 17 (4), 232.
[2] Brown, D.G., and Boström, J., 2016, Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone?, J. Med. Chem., 59 (10), 4443–4458.
[3] Heravi, M.M., Zadsirjan, V., Hajiabbasi, P., and Hamidi, H., 2019, Advances in Kumada–Tamao–Corriu cross-coupling reaction: An update, Monatsh. Chem., 150 (4), 535–591.
[4] Kiss, Á., Hell, Z., and Bálint, M., 2010, Nickel/magnesium-lanthanum mixed oxide catalyst in the Kumada-coupling, Org. Biomol. Chem., 8 (2), 331–335.
[5] Kiss, Á., Németh, J., Fodor, A., and Hell, Z., 2015, Supported metal catalysts in organic syntheses, Period. Polytech., Chem. Eng., 59 (1), 72–81.
[6] Vásquez-Céspedes, S., Betori, R.C., Cismesia, M.A., Kirsch, J.K., and Yang, Q., 2021, Heterogeneous catalysis for cross-coupling reactions: An underutilized powerful and sustainable tool in the fine chemical industry?, Org. Process Res. Dev., 25 (4), 740–753.
[7] Ramesh, A., Da, C.T., Manigandan, R., Bhargav, P.B., and Nguyen-Le, M.T., 2022, Selectivity oxidation of benzyl alcohol using mesoporous g-C3N4 catalysts prepared by hard template method, Colloids Interface Sci. Commun., 48, 100608.
[8] Zhang, Y.F., and Shi, Z.J., 2019, Upgrading cross-coupling reactions for biaryl syntheses, Acc. Chem. Res., 52 (1), 161–169.
[9] Beletskaya, I.P., and Cheprakov, A.V., 2004, Copper in cross-coupling reactions: The post-Ullmann chemistry, Coord. Chem. Rev., 248 (21), 2337–2364.
[10] Kadu, B.S., 2021, Suzuki-Miyaura cross coupling reaction: Recent advancements in catalysis and organic synthesis, Catal. Sci. Technol., 11 (4), 1186–1221.
[11] Ghorbani-Choghamarani, A., Derakhshan, A.A., Hajjami, M., and Rajabi, L., 2016, Copper-Schiff base alumoxane: A new and reusable mesoporous nano catalyst for Suzuki-Miyaura and Stille C-C cross-coupling reactions, RSC Adv., 6 (97), 94314–94324.
[12] Ali, M.E., Rahman, M.M., Sarkar, S.M., and Abd Hamid, S.B., 2014, Heterogeneous metal catalysts for oxidation reactions, J. Nanomater., 2024 (1), 192038.
[13] Deshmukh, P., Bhatt, J., Peshwe, D., and Pathak, S., 2012, Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash, Trans. Indian Inst. Met., 65 (1), 63–70.
[14] Setyawan, N., Hoerudin, H., and Yuliani, S., 2021, Synthesis of silica from rice husk by sol-gel method, IOP Conf. Ser.: Earth Environ. Sci., 733 (1), 012149.
[15] Yuvakkumar, R., Elango, V., Rajendran, V., and Kannan, N., 2014, High-purity nano silica powder from rice husk using a simple chemical method, J. Exp. Nanosci., 9 (3), 272–281.
[16] Nayak, P.P., and Datta, A.K., 2021, Synthesis of SiO2-nanoparticles from rice husk ash and its comparison with commercial amorphous silica through material characterization, Silicon, 13 (4), 1209–1214.
[17] Mejía, J.M., Mejía de Gutiérrez, R., and Montes, C., 2016, Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder, J. Cleaner Prod., 118, 133–139.
[18] Bagheri, S., Muhd Julkapli, N., and Bee Abd Hamid, S., 2014, Titanium dioxide as a catalyst support in heterogeneous catalysis, Sci. World J., 2014 (1), 727496.
[19] Palcheva, R., Dimitrov, L., Tyuliev, G., Spojakina, A., and Jiratova, K., 2013, TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity, Appl. Surf. Sci., 265, 309–316.
[20] Ulfa, M., Al Afif, H., Saraswati, T.E., and Bahruji, H., 2022, Fast removal of methylene blue via adsorption-photodegradation on TiO2/SBA-15 synthesized by slow calcination, Materials, 15 (16), 5471.
[21] Agustiningsih, D., Otomo, R., Kamiya, Y., Nuryono, N., Santosa, S.J., and Kunarti, E.S., 2024, Fixing Ni2+ onto mesoporous SiO2-TiO2 through amino silane and application as a catalyst for Kumada cross coupling reaction for 1,1'-biphenyl synthesis, Appl. Catal., A, 672, 119606.
[22] Agustiningsih, D., Kunarti, E.S., Nuryono, N., Santosa, S.J., Mardjan, M.I.D., Kamiya, Y., and Otomo, R., 2024, Novel nickel-immobilized-SiO2-TiO2 fine particles in the presence of cetyltrimethylammonium bromide as a catalyst for ultrasound-assisted-Kumada cross-coupling reaction, Heliyon, 10 (14), e34614.
[23] Kiani, F., and Naeimi, H., 2018, Ultrasonic accelerated coupling reaction using magnetically recyclable bis (propyl molononitril) Ni complex nanocatalyst: A novel, green and efficient synthesis of biphenyl derivatives, Ultrason. Sonochem., 48, 267–274.
[24] Esmaeilpour, M., Zahmatkesh, S., Fahimi, N., and Nosratabadi, M., 2018, Palladium nanoparticles immobilized on EDTA-modified Fe3O4@SiO2 nanospheres as an efficient and magnetically separable catalyst for Suzuki and Sonogashira cross-coupling reactions, Appl. Organomet. Chem., 32 (4), e4302.
[25] Akkoç, M., Buğday, N., Altın, S., Kiraz, N., Yaşar, S., and Özdemir, İ., 2021, N-heterocyclic carbene Pd(II) complex supported on Fe3O4@SiO2: Highly active, reusable and magnetically separable catalyst for Suzuki-Miyaura cross-coupling reactions in aqueous media, J. Organomet. Chem., 943, 121823.
[26] Fan, X., Yang, J., Pang, Q., Liu, Z., Zhang, P., and Yang, J.H., 2021, Ultrafine and highly dispersed Pd/SiO2 for Suzuki−Miyaura cross-coupling reactions, Catal. Lett., 151 (8), 2291–2301.
[27] Khandaka, H., Sharma, K.N., and Joshi, R.K., 2021, Aerobic Cu and amine free Sonogashira and Stille couplings of aryl bromides/chlorides with a magnetically recoverable Fe3O4@SiO2 immobilized Pd(II)-thioether containing NHC, Tetrahedron Lett., 67, 152844.
[28] Eslahi, H., Sardarian, A.R., and Esmaeilpour, M., 2021, Green and sustainable palladium nanomagnetic catalyst stabilized by glucosamine-functionalized Fe3O4@SiO2 nanoparticles for Suzuki and Heck reactions, Appl. Organomet. Chem., 35 (7), e6260.
[29] Zhao, Y., Huang, Z., Wang, L., Chen, X., Zhang, Y., Yang, X., Pang, D., Kang, J., and Guo, L., 2022, Highly efficient and recyclable amorphous Pd(II)/crystal Pd(0) catalyst for boosting Suzuki reaction in aqueous solution, Nano Res., 15 (2), 1193–1198.
[30] Ghabdian, K., Motavalizadehkakhky, A., Zhiani, R., Heravi, M.M., Allahresani, A., and Zadsirjan, V., 2023, (Fe3O4@SiO2/GO–NH2–CoII NPs): A novel and efficient nanomagnetic heterogeneous cobalt catalysis in the Sonogashira and Heck–Mizoroki coupling reactions, J. Cluster Sci., 34 (6), 3105–3119.
[31] Nasseri, F., Nasseri, M.A., Kassaee, M.Z., and Yavari, I., 2023, Synergistic performance of a new bimetallic complex supported on magnetic nanoparticles for Sonogashira and C–N coupling reactions, Sci. Rep., 13 (1), 18153.
[32] Abdalrazaq, E.A., Mohammed, H.K., Voronkova, D.K., Joshi, S.K., Saleh, E.A.M., Kareem, A.H., Kumar, A., Alawadi, A., Alslaami, A., and Fathollahi, R., 2024, Palladium anchored to BisPyP@bilayer-SiO2@NMP organic–inorganic hybrid as an efficient and recoverable novel nanocatalyst in Suzuki and Stille C–C coupling reactions, Sci. Rep., 14 (1), 8945.
[33] Sharma, H., Mahajan, H., Jamwal, B., and Paul, S., 2018, Cu@Fe3O4-TiO2-L-dopa: A novel and magnetic catalyst for the Chan-Lam cross-coupling reaction in ligand free conditions, Catal. Commun., 107, 68–73.
[34] Eskandari, A., Jafarpour, M., Rezaeifard, A., and Salimi, M., 2019, Supramolecular photocatalyst of palladium (II) encapsulated within Dendrimer on TiO2 nanoparticles for photo-induced Suzuki-Miyaura and Sonogashira cross-coupling reactions, Appl. Organomet. Chem., 33 (10), e5093.
[35] Feizpour, F., Jafarpour, M., and Rezaeifard, A., 2019, Band gap modification of TiO2 nanoparticles by ascorbic acid-stabilized Pd nanoparticles for photocatalytic Suzuki–Miyaura and Ullmann coupling reactions, Catal. Lett., 149 (6), 1595–1610.
[36] Chen, Y., and Feng, L., 2020, Silver nanoparticles doped TiO2 catalyzed Suzuki-coupling of bromoaryl with phenylboronic acid under visible light, J. Photochem. Photobiol., B, 205, 111807.
[37] Adam, M.S.S., Ullah, F., and Makhlouf, M.M., 2020, Hybrid organic-inorganic Cu(II) iminoisonicotine@TiO2@Fe3O4 heterostructure as efficient catalyst for cross-couplings, J. Am. Ceram. Soc., 103 (8), 4632–4653.
[38] Banda, P.G., and Mucherla, R., 2022, Palladium-supported polydopamine-coated NiFe2O4@TiO2: A sole photocatalyst for Suzuki and Sonogashira coupling reactions under sunlight irradiation, ACS Omega, 7 (33), 29356–29368.
[39] Hosseini-Sarvari, M., and Dehghani, A., 2023, Nickel/TiO2-catalyzed Suzuki–Miyaura cross-coupling of arylboronic acids with aryl halides in MeOH/H2O, Monatsh. Chem., 154 (3), 397–405.
[40] Gandra, U.R., Reddy, P.S., Salam, A., Gajagouni, S.P., Alfantazi, A., and Mohideen, M.I.H., 2024, TiO2 supported pallidum-bipyridyl complex as an efficient catalyst for Suzuki–Miyaura reaction in aqueous-ethanol, Sci. Rep., 14 (1), 7323.
[41] Wu, Y., Zhang, Y., Zhou, J., and Gu, D., 2020, Recent progress on functional mesoporous materials as catalysts in organic synthesis, Emergent Mater., 3 (3), 247–266.
[42] Piyathissa, S.D.S., Kahandage, P.D., Namgay, N., Zhang, H., Noguchi, R., and Ahamed, T., 2023, Introducing a novel rice husk combustion technology for maximizing energy and amorphous silica production environmental impacts and health risk, Energies, 16 (3), 1120.
[43] Yan, S., Yin, D., He, F., Cai, J., Schliermann, T., and Behrendt, F., 2022, Characteristics of smoldering on moist rice husk for silica production, Sustainability, 14 (1), 317.
[44] Ajeel, S.A., Sukkar, K.A., and Zedin, N.K., 2020, Extraction of high purity amorphous silica from rice husk by chemical process, IOP Conf. Ser.: Mater. Sci. Eng., 881 (1), 012096.
[45] Askaruly, K., Azat, S., Sartova, Z., Yeleuov, M., Kerimkulova, A., and Bekseitova, K., 2020, Obtaining and characterization of amorphous silica from rice husk, J. Chem. Technol. Metall., 55 (1), 88–97.
[46] Aharipour, N., Nemati, A., and Malek Khachatourian, A., 2022, Green synthesis of silica extracted from rice husk ash, Adv. Ceram. Prog., 8 (4), 15–20.
[47] Sawasdee, V., and Pisutpaisal, N., 2022, Rice husk ash characterization and utilization as a source of silica material, Chem. Eng. Trans., 93, 79–84.
[48] Carvalho, G.C., Marena, G.D., Karnopp, J.C.F., Jorge, J., Sábio, R.M., Martines, M.A.U., Bauab, T.M., and Chorilli, M., 2022, Cetyltrimethylammonium bromide in the synthesis of mesoporous silica nanoparticles: General aspects and in vitro toxicity, Adv. Colloid Interface Sci., 307, 102746.
[49] Nurhadi, M., 2017, Modification of coal char-loaded TiO2 by sulfonation and alkylsilylation to enhance catalytic activity in styrene oxidation with hydrogen peroxide as oxidant, Bull. Chem. React. Eng. Catal., 12 (1), 55–61.
[50] Hikmah, N., Agustiningsih, D., Nuryono, N., and Kunarti, E.S., 2022, Preparation of iron-doped SiO2/TiO2 using silica from sugarcane bagasse ash for visible light degradation of Congo red, Indones. J. Chem., 22 (2), 402–412.
[51] Rizal, U., Das, S., Kumar, D., Swain, B.S., and Swain, B.P., 2016, Synthesis and characterization of TiO2 nanostructure thin films grown by thermal CVD, AIP Conf. Proc., 1724 (1), 020115.
[52] Bakri, A.S., Sahdan, M.Z., Adriyanto, F., Raship, N.A., Said, N.D.M., Abdullah, S.A., and Rahim, M.S., 2017, Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties, AIP Conf. Proc., 1788 (1), 030030.
[53] Malevu, T.D., Mwankemwa, B.S., Motloung, S.V., Tshabalala, K.G., and Ocaya, R.O., 2019, Effect of annealing temperature on nano-crystalline TiO2 for solar cell applications, Phys. E, 106, 127–132.
[54] Akrami, S., Watanabe, M., Ling, T.H., Ishihara, T., Arita, M., Fuji, M., and Edalati, K., 2021, High-pressure TiO2-II polymorph as an active photocatalyst for CO2 to CO conversion, Appl. Catal., B, 298, 120566.
[55] Agustiningsih, D., Nuryono, N., Santosa, S.J., and Kunarti, E.S., 2023, Propylamine silica-titania hybrid material modified with Ni(II) as the catalyst for benzyl alcohol to benzaldehyde conversion, Indones. J. Chem., 23 (5), 1361–1374.
[56] Wang, L., Zhang, K., Hu, Z., Duan, W., Cheng, F., and Chen, J., 2014, Porous CuO nanowires as the anode of rechargeable Na-ion batteries, Nano Res., 7 (2), 199–208.
[57] Zimbovskiy, D.S., Gavrilov, A.I., and Churagulov, B.R., 2018, Synthesis of copper oxides films via anodic oxidation of copper foil followed by thermal reduction, IOP Conf. Ser.: Mater. Sci. Eng., 347 (1), 012010.
[58] Wang, J., Ran, Q., Xu, X., Zhu, B., and Zhang, W., 2019, Preparation and optical properties of TiO2-SiO2 thin films by sol-gel dipping method, IOP Conf. Ser.: Earth Environ. Sci., 310 (4), 042029.
[59] Kocjan, A., Logar, M., and Shen, Z., 2017, The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics, Sci. Rep., 7 (1), 2541.
[60] Tian, Y., Jiao, W., Liu, P., Song, S., Lu, Z., Hirata, A., and Chen, M., 2019, Fast coalescence of metallic glass nanoparticles, Nat. Commun., 10 (1), 5249.
[61] Busacca, C.A., Fandrick, D.R., Song, J.J., and Senanayake, C.H., 2012, “Transition Metal Catalysis in the Pharmaceutical Industry” in Applications of Transition Metal Catalysis in Drug Discovery and Development, John Wiley & Sons, Inc., Hoboken, New Jersey, US, 1–24.
[62] Mondal, P., Bhanja, P., Khatun, R., Bhaumik, A., Das, D., and Manirul Islam, S., 2017, Palladium nanoparticles embedded on mesoporous TiO2 material (Pd@MTiO2) as an efficient heterogeneous catalyst for Suzuki-Coupling reactions in water medium, J. Colloid Interface Sci., 508, 378–386.
[63] Sancheti, S.V., and Gogate, P.R., 2018, Intensification of heterogeneously catalyzed Suzuki-Miyaura cross-coupling reaction using ultrasound: Understanding effect of operating parameters, Ultrason. Sonochem., 40, 30–39.
[64] U.S. Environmental Protection Agency, 2010, Toxicological Review of Biphenyl, EPA/635/R-11/005F, https://iris.epa.gov/static/pdfs/0013tr.pdf.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.










