Unrevealing the Impact of Annealing Condition on Catalytic Activity of PtNi Alloy Electrode Towards Oxygen Reduction Reaction

https://doi.org/10.22146/ijc.99297

Anindya Pramudya Wardhani(1), Salwaa Tanaya(2), Retna Deca Pravitasari(3), Damisih Damisih(4), Dewi Kusuma Arti(5), Sri Rahayu(6), Muhammad Didik Gumelar(7), Elok Fidiani(8*)

(1) Department of Physics, Parahyangan Catholic University, Jl. Ciumbuleuit 94, Bandung 40141, Indonesia
(2) Department of Chemical Engineering, Parahyangan Catholic University, Jl. Ciumbuleuit 94, Bandung 40141, Indonesia
(3) Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Jl. Raya Puspiptek 60, Setu, Tangerang Selatan 15314, Indonesia
(4) Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Jl. Raya Puspiptek 60, Setu, Tangerang Selatan 15314, Indonesia
(5) Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Jl. Raya Puspiptek 60, Setu, Tangerang Selatan 15314, Indonesia
(6) Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jl. Raya Puspiptek 60, Setu, Tangerang Selatan 15314, Indonesia
(7) Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), Jl. Raya Puspiptek 60, Setu, Tangerang Selatan 15314, Indonesia
(8) Department of Physics, Parahyangan Catholic University, Jl. Ciumbuleuit 94, Bandung 40141, Indonesia
(*) Corresponding Author

Abstract


Alloying platinum (Pt) with transition metals such as nickel (Ni) has been an effective approach for reducing Pt loading and enhancing catalytic activities towards the sluggish oxygen reduction reaction (ORR) on the cathode of proton exchange membrane fuel cell (PEMFC). In this work, we advance the fabrication of PtNi alloy electrodes through direct synthesis on the gas diffusion layer (GDL) utilizing wet chemical reduction methods. The catalytic activities and binding interaction between Pt and Ni are optimized through annealing PtNi electrodes at 200 °C under different gas flows of N2 and the mixture of H2/N2 at 5%/95%. The physical characterization using X-ray diffraction (XRD) analysis and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) show the significant effect of the annealing environment on the morphology and distribution of the PtNi alloy catalyst on the GDL surface. The optimized electrodes exhibited enhanced ORR mass activity, with values of 8.17 and 18.26 mA mg−1 for PtNi annealed with N2 and N2/H2, respectively, surpassing the benchmark Pt/C (5.25 mA mg¹). These results underscore the critical role of the annealing environment in optimizing the catalytic performance of PtNi-based electrodes for PEMFC applications, offering insights into more efficient fuel cell technologies.


Keywords


PtNi; ORR; PEMFC; annealing; catalyst electrode

Full Text:

Full Text PDF


References

[1] Fan, L., Tu, Z., and Chan, S.H., 2023, Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: Theory, integration and prospective, Int. J. Hydrogen Energy, 48 (21), 7828–7865.

[2] Alaswad, A., Baroutaji, A., Achour, H., Carton, J., Al Makky, A., and Olabi, A.G., 2016, Developments in fuel cell technologies in the transport sector, Int. J. Hydrogen Energy, 41 (37), 16499–16508.

[3] Das, P.K., Barbir, F., Jiao, K., Wang, Y., and Li, X., 2023, Fuel Cells for Transportation—An Overview in Fuel Cells for Transportation, Woodhead Publishing, Cambridge, MA, US, 1–28.

[4] Bard, A.J., and Faulkner, L.R., 2001, Electrochemical Methods: Fundamentals and Applications, 2nd Ed., Harris, John Wiley & Sons, New York, US.

[5] Pollet, B.G., Kocha, S.S., and Staffell, I., 2019, Current status of automotive fuel cells for sustainable transport, Curr. Opin. Electrochem., 16, 90–95.

[6] Gittleman, C.S., Kongkanand, A., Masten, D., and Gu, W., 2019, Materials research and development focus areas for low cost automotive proton-exchange membrane fuel cells, Curr. Opin. Electrochem., 18, 81–89.

[7] Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M., Chi, M., More, K.L., Li, Y., Markovic, N.M., Somorjai, G.A., Yang, P., and Stamenkovic, V.R., 2014, Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces, Science, 343 (6177), 1339–1343.

[8] Gocyla, M., Kuehl, S., Shviro, M., Heyen, H., Selve, S., Dunin-Borkowski, R.E., Heggen, M., and Strasser, P., 2018, Shape stability of octahedral PtNi Nanocatalysts for electrochemical oxygen reduction reaction studied by in situ transmission electron microscopy, ACS Nano, 12 (6), 5306–5311.

[9] Chi, M., Wang, C., Lei, Y., Wang, G., Li, D., More, K.L., Lupini, A., Allard, L.F., Markovic, N.M., and Stamenkovic, V.R., 2015, Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing, Nat. Commun., 6 (1), 8925.

[10] Choi, J., Cho, J., Roh, C.W., Kim, B.S., Choi, M.S., Jeong, H., Ham, H.C., and Lee, H., 2019, Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells, Appl. Catal., B, 247, 142–149.

[11] Fidiani, E., Thirunavukkarasu, G., Li, Y., Chiu, Y.L., and Du, S., 2020, Ultrathin AgPt alloy nanorods as low-cost oxygen reduction reaction electrocatalysts in proton exchange membrane fuel cells, J. Mater. Chem. A, 8 (23), 11874–11883.

[12] Fidiani, E., Pravitasari, R.D., Hapsari, A.U., Budiman, A.H., Dewi, E.L., and Du, S., 2024, Porous PtAg nanowires: A highly active platinum loading electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells, ACS Appl. Energy Mater., 7, 556–564.

[13] Wang, X.X., Sokolowski, J., Liu, H., and Wu, G., 2020, Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property, Chin. J. Catal., 41 (5), 739–755.

[14] Li, D., Wang, C., Strmcnik, D.S., Tripkovic, D.V., Sun, X., Kang, Y., Chi, M., Snyder, J.D., van der Vliet, D., Tsai, Y., Stamenkovic, V.R., Sun, S., and Markovic, N.M., 2014, Functional links between Pt single crystal morphology and nanoparticles with different size and shape: The oxygen reduction reaction case, Energy Environ. Sci., 7 (12), 4061–4069.

[15] Lim, C., Fairhurst, A.R., Ransom, B.J., Haering, D., and Stamenkovic, V.R., 2023, Role of transition metals in Pt alloy catalysts for the oxygen reduction reaction, ACS Catal., 13 (22), 14874–14893.

[16] Viswanathan, V., Hansen, H.A., Rossmeisl, J., and Nørskov, J.K., 2012, Universality in oxygen reduction electrocatalysis on metal surfaces, ACS Catal., 2 (8), 1654–1660.

[17] Marković, N.M., Schmidt, T.J., Stamenković, V., and Ross, P.N., 2001, Oxygen reduction reaction on Pt and Pt bimetallic surfaces: A selective review, Fuel Cells, 1 (2), 105–116.

[18] Huang, X., Zhao, Z., Cao, L., Chen, Y., Zhu, E., Lin, Z., Li, M., Yan, A., Zettl, A., Wang, Y.M., Duan, X., Mueller, T., and Huang, Y., 2015, High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction, Science, 348 (6240), 1230–1234.

[19] Pan, L., Ott, S., Dionigi, F., and Strasser, P., 2019, Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells, Curr. Opin. Electrochem., 18, 61–71.

[20] Jaganmohan, M., 2024, Global nickel reserves 2023, by country, Statistics & Facts, Statista, https://www.statista.com/statistics/273634/nickel-reserves-worldwide-by-country/.

[21] Mardle, P., Thirunavukkarasu, G., Guan, S., Chiu, Y.L., and Du, S., 2020, Comparative study of PtNi nanowire array electrodes toward oxygen reduction reaction by half-cell measurement and PEMFC test, ACS Appl. Mater. Interfaces, 12 (38), 42832–42841.

[22] Mardle, P., and Du, S., 2018, Annealing behaviour of Pt and PtNi nanowires for proton exchange membrane fuel cells, Materials, 11 (8), 1473.

[23] Kang, Y.S., Choi, D., Park, H.Y., and Yoo, S.J., 2019, Tuning the surface structure of PtCo nanocatalysts with high activity and stability toward oxygen reduction, J. Ind. Eng. Chem., 78, 448–454.

[24] Ehelebe, K., Seeberger, D., Paul, M.T.Y., Thiele, S., Mayrhofer, K.J.J., and Cherevko, S., 2019, Evaluating electrocatalysts at relevant currents in a half-cell: The impact of Pt loading on oxygen reduction reaction, J. Electrochem. Soc., 166 (16), F1259.

[25] Ehelebe, K., Schmitt, N., Sievers, G., Jensen, A.W., Hrnjić, A., Collantes Jiménez, P., Kaiser, P., Geuß, M., Ku, Y.P., Jovanovič, P., Mayrhofer, K.J.J., Etzold, B., Hodnik, N., Escudero-Escribano, M., Arenz, M., and Cherevko, S., 2022, Benchmarking fuel cell electrocatalysts using gas diffusion electrodes: Inter-lab comparison and best practices, ACS Energy Lett., 7 (2), 816–826.

[26] Zhang, C., Liang, X., Xu, R., Dai, C., Wu, B., Yu, G., Chen, B., Wang, X., and Liu, N., 2021, H2in situ inducing strategy on Pt surface segregation over low Pt doped PtNi5 nanoalloy with superhigh alkaline HER activity, Adv. Funct. Mater., 31 (14), 2008298.

[27] Lu, Y., Du, S., and Steinberger-Wilckens, R., 2015, Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells, Appl. Catal., B, 164, 389–395.

[28] Fidiani, E., AlKahfi, A.Z., Absor, M.A.U., Pravitasari, R.D., Damisih, D., Listiani Dewi, E., Chiu, Y.L., and Du, S., 2022, Au-doped PtAg nanorod array electrodes for proton-exchange membrane fuel cells, ACS Appl. Energy Mater., 5 (12), 14979–14989.

[29] Fidiani, E., Thirunavukkarasu, G., Li, Y., Chiu, Y.L., and Du, S., 2021, Au integrated AgPt nanorods for oxygen reduction reaction in proton exchange membrane fuel cells, J. Mater. Chem. A, 9 (9), 5578–5587.

[30] El-Kharouf, A., Mason, T.J., Brett, D.J.L., and Pollet, B.G., 2012, Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells, J. Power Sources, 218, 393–404.

[31] Yang, Y., Zhou, X., Li, B., and Zhang, C., 2021, Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: Material and structure designs of microporous layer, Int. J. Hydrogen Energy, 46 (5), 4259–4282.

[32] Li, M., Zhao, Z., Cheng, T., Fortunelli, A., Chen, C.Y., Yu, R., Zhang, Q., Gu, L., Merinov, B.V., Lin, Z., Zhu, E., Yu, T., Jia, Q., Guo, J., Zhang, L., Goddard, W.A., Huang, Y., and Duan, X., 2016, Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction, Science, 354 (6318), 1414–1419.

[33] Hoshi, Y., Yoshida, T., Nishikata, A., and Tsuru, T., 2011, Dissolution of Pt-M (M: Cu, Co, Ni, Fe) binary alloys in sulfuric acid solution, Electrochim. Acta, 56 (15), 5302–5309.

[34] Beermann, V., Gocyla, M., Kühl, S., Padgett, E., Schmies, H., Goerlin, M., Erini, N., Shviro, M., Heggen, M., Dunin-Borkowski, R.E., Muller, D.A., and Strasser, P., 2017, Tuning the electrocatalytic oxygen reduction reaction activity and stability of shape-controlled Pt-Ni nanoparticles by thermal annealing - elucidating the surface atomic structural and compositional changes, J. Am. Chem. Soc., 139 (46), 16536–16547.

[35] Zeng, W.J., Tong, L., Liu, J., and Liang, H.W., 2022, Annealing-temperature-dependent relation between alloying degree, particle size, and fuel cell performance of PtCo catalysts, J. Electroanal. Chem., 922, 116728.

[36] Alia, S.M., Ngo, C., Shulda, S., Ha, M.A., Dameron, A.A., Weker, J.N., Neyerlin, K.C., Kocha, S.S., Pylypenko, S., and Pivovar, B.S., 2017, Exceptional oxygen reduction reaction activity and durability of platinum-nickel nanowires through synthesis and post-treatment optimization, ACS Omega, 2 (4), 1408–1418.

[37] Garsany, Y., Baturina, O.A., Swider-Lyons, K.E., and Kocha, S.S., 2010, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction, Anal. Chem., 82 (15), 6321–6328.

[38] Schmitt, N., Schmidt, M., Hübner, G., and Etzold, B.J.M., 2022, Oxygen reduction reaction measurements on platinum electrocatalysts in gas diffusion electrode half-cells: Influence of electrode preparation, measurement protocols and common pitfalls, J. Power Sources, 539, 231530.

[39] He, S., Liu, Y., Zhan, H., and Guan, L., 2021, Direct thermal annealing synthesis of ordered Pt alloy nanoparticles coated with a thin N-doped carbon shell for the oxygen reduction reaction, ACS Catal., 11 (15), 9355–9365.

[40] Simamora, R.M.A., Setyadi, J.P., Pravitasari, R.D., Arjasa, O.P., Damisih, D., Hapsari, A.U., Raharjo, J., Indayaningsih, N., Subhan, A., Budiman, A.H., Arie, A.A., and Fidiani, E., 2025, Pt nanowire arrays on graphene-integrated cathode gas diffusion layer for proton exchange membrane fuel cells, ACS Appl. Energy Mater., 8 (1), 286–297.

[41] Shinagawa, T., Garcia-Esparza, A.T., and Takanabe, K., 2015, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Sci. Rep., 5 (1), 13801.

[42] Jia, Q., Segre, C.U., Ramaker, D., Caldwell, K., Trahan, M., and Mukerjee, S., 2013, Structure-property-activity correlations of Pt-bimetallic nanoparticles: A theoretical study, Electrochim. Acta, 88, 604–613.



DOI: https://doi.org/10.22146/ijc.99297

Article Metrics

Abstract views : 782 | views : 270


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.