Solar-Light-Driven N-TiO2-SiO2 Photocatalytic Activity on the Simultaneous Removal of Bisphenol-A and Escherichia coli

Minh Vien Le(1*), Trung Tan Tran(2), Anh Hoang Hoang(3), Hien Thao Nguyen(4), Vu Truong-Son Le(5), Van Hoang Luan(6), Manh Thang Ngo(7)
(1) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc, Ho Chi Minh City 700000, Vietnam
(2) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc, Ho Chi Minh City 700000, Vietnam
(3) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc, Ho Chi Minh City 700000, Vietnam
(4) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc, Ho Chi Minh City 700000, Vietnam
(5) University of Science and Education, University of Danang, 459 Ton Duc Thang Street, Da Nang City 550000, Vietnam
(6) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc, Ho Chi Minh City 700000, Vietnam
(7) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc, Ho Chi Minh City 700000, Vietnam
(*) Corresponding Author
Abstract
N-doped TiO2-SiO2 nanocomposites were synthesized using a facile sol-gel method and characterized through various techniques. Their photocatalytic performance was assessed by degrading BPA (10 mg L−1) and inactivating Escherichia coli (~109 CFU mL−1) under single and dual contaminant conditions using a 26 W solar light simulator. Among the synthesized materials, the N-TiO2-SiO2 nanocomposite with a 10% N:Ti molar ratio (TS5N10) demonstrated the highest photocatalytic activity, achieving 83.9% BPA degradation and complete E. coli disinfection in single contaminant systems after 4 h of irradiation. Notably, TS5N10 exhibited robust performance even in dual-contaminant scenarios involving BPA and E. coli. Mechanistic investigations identified photo-generated holes as the dominant reactive species. The superior performance of TS5N10 was attributed to its nanostructure, high specific surface area, strong light absorption, and reduced photoinduced electron-hole recombination. These results highlight the potential of TS5N10 for practical water treatment applications.
Keywords
Full Text:
Full Text PDFReferences
[1] Khatri, N., and Tyagi, S., 2015, Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas, Front. Life Sci., 8 (1), 23–39.
[2] Salehi, M., 2022, Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis, Environ. Int., 158, 106936.
[3] Orge, C.A., Faria, J.L., and Pereira, M.F.R., 2017, Photocatalytic ozonation of aniline with TiO2-carbon composite materials, J. Environ. Manage., 195, 208–215.
[4] Lu, Q., Li, N., and Zhang, X., 2022, Supramolecular recognition PVDF/PVA ultrafiltration membrane for rapid removing aromatic compounds from water, Chem. Eng. J., 436, 132889.
[5] Sambaza, S.S., Maity, A., and Pillay, K., 2020, Polyaniline-coated TiO2 nanorods for photocatalytic degradation of bisphenol A in water, ACS Omega, 5 (46), 29642–29656.
[6] Stec, J., Kosikowska, U., Mendrycka, M., Stępień-Pyśniak, D., Niedźwiedzka-Rystwej, P., Bębnowska, D., Hrynkiewicz, R., Ziętara-Wysocka, J., and Grywalska, E., 2022, Opportunistic pathogens of recreational waters with emphasis on antimicrobial resistance—A possible subject of human health concern, Int. J. Environ. Res. Public Health, 19 (12), 7308.
[7] Bhandari, H., Garg, S., and Gaba, R., 2021, Advanced nanocomposites for removal of heavy metals from wastewater, Macromol. Symp., 397 (1), 2000337.
[8] Morones-Esquivel, M.M., Núñez-Núñez, C.M., Hernández-Mendoza, J.L., and Proal-Nájera, J.B., 2022, Bacterial communities in effluents rich in phenol and their potential in bioremediation: Kinetic modeling, Int. J. Environ. Res. Public Health, 19 (21), 14222.
[9] Le, P.N.M., Tran, H.T., Ngo, T.H., Truong, V.T., and Le, M.V., 2024, The role of iron dopant on the photocatalytic performance of anatase TiO2: Synthesis, characterization, and removal of bisphenol-A under simulated natural light, J. Appl. Sci. Eng., 27 (6), 2675–2685.
[10] Rojviroon, T., and Sirivithayapakorn, S., 2018, E. coli bacteriostatic action using TiO2 photocatalytic reactions, Int. J. Photoenergy, 2018 (1), 8474017.
[11] Long, M., Wang, J., Zhuang, H., Zhang, Y., Wu, H., and Zhang, J., 2014, Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms–Salmonella typhimurium and Listeria monocytogenes, Food Control, 39, 68–74.
[12] Pantaroto, H.N., Ricomini-Filho, A.P., Bertolini, M.M., Dias da Silva, J.H., Azevedo Neto, N.F., Sukotjo, C., Rangel, E.C., and Barão, V.A., 2018, Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm, Dent. Mater., 34 (7), e182–e195.
[13] Huang, J., Dou, L., Li, J., Zhong, J., Li, M., and Wang, T., 2021, Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants, J. Hazard. Mater., 403, 123857.
[14] Mahanta, U., Khandelwal, M., and Deshpande, A.S., 2022, TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light, Appl. Surf. Sci., 576, 151745.
[15] Murcia, J.J., Ávila-Martínez, E.G., Rojas, H., Navío, J.A., and Hidalgo, M.C., 2017, Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2, Appl. Catal., B, 200, 469–476.
[16] Cani, D., van der Waal, J.C., and Pescarmona, P.P., 2021, Highly-accessible, doped TiO2 nanoparticles embedded at the surface of SiO2 as photocatalysts for the degradation of pollutants under visible and UV radiation, Appl. Catal., A, 621, 118179.
[17] Zhang, L., Guo, J., Hao, B., and Ma, H., 2022, WO3/TiO2 heterojunction photocatalyst prepared by reactive magnetron sputtering for Rhodamine B dye degradation, Opt. Mater., 133, 113035.
[18] Chen, X., and Burda, C., 2008, The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials, J. Am. Chem. Soc., 130 (15), 5018–5019.
[19] Yu, H., Zhang, M., Wang, Y., Lv, J., Liu, Y., He, G., and Sun, Z., 2021, Low-temperature strategy for vapor phase hydrothermal synthesis of CNS-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity, J. Ind. Eng. Chem., 98, 130–139.
[20] Le, T.T.T., Tran, D.T., and Danh, T.H., 2021, Remarkable enhancement of visible light driven photocatalytic performance of TiO2 by simultaneously doping with C, N, and S, Chem. Phys., 545, 111144.
[21] Dey, K., Vaidya, S., Gobetti, A., Ramorino, G., and Ganguli, A.K., 2022, Facile synthesis of N-doped biphasic TiO2 nanoparticles with enhanced visible light-driven photocatalytic performance, Mater. Today Commun., 33, 104690.
[22] Nguyen, D.T., Ho, T.N.S., and Le, M.V., 2019, Removal of β-naphthol in water via photocatalytic degradation over N-TiO2/SiO2 nanocomposite under simulated solar light irradiation, Chem. Eng. Trans., 72, 1–6.
[23] Jesus, M.A.M.L., Ferreira, A.M., Lima, L.F.S., Batista, G.F., Mambrini, R.V., and Mohallem, N.D.S., 2021, Micro-mesoporous TiO2/SiO2 nanocomposites: Sol-gel synthesis, characterization, and enhanced photodegradation of quinoline, Ceram. Int., 47 (17), 23844–23850.
[24] Esfandiari, N., Kashefi, M., Mirjalili, M., and Afsharnezhad, S., 2021, On the adsorption kinetics and mechanism of enhanced photocatalytic activity of Fe3O4‐SiO2‐TiO2 core‐multishell nanoparticles against E. coli, J. Biomed. Mater. Res., Part A, 109 (2), 181–192.
[25] Yuwendi, Y., Ibadurrohman, M., Setiadi, S., and Slamet, S., 2022, Photocatalytic degradation of polyethylene microplastics and disinfection of E. coli in water over Fe-and Ag-modified TiO2 nanotubes, Bull. Chem. React. Eng. Catal., 17 (2), 263–277.
[26] Nguyen, T.V., Le, P.N.M., Huynh, N.D.T., Ngo, T.H., Huynh, H.T., and Le, M.V., 2022, The synergistic effect of N-doped TiO2-SiO2 nanocatalysts and peroxydisulfate towards improving Bisphenol A photodegradation efficiency, MNIJ, 2 (1), 1–14.
[27] Le, M.V., Tai, H.H., Oanh, N.T.K., Thang, N.M., and Suong, H.T.N., 2020, Enhanced photocatalytic degradation performance of bisphenol A over TiO2-SiO2 photocatalyst by improving specific surface area under simulation natural light, Vietnam J. Catal. Adsorpt., 9 (4), 49–57.
[28] Abbasi_Asl, H., Sabzehmeidani, M.M., Ghaedi, M., and Moradi, Z., 2023, Bifunctional quaternary magnetic composite as efficient heterojunctions photocatalyst for simultaneous photocatalytic visible light degradation of dye and herbicide pollutants from water and bacterial disinfection, J. Environ. Manage., 345, 118656.
[29] He, J., Zeng, X., Lan, S., and Lo, I.M., 2019, Reusable magnetic Ag/Fe, N-TiO2/Fe3O4@SiO2 composite for simultaneous photocatalytic disinfection of E. coli and degradation of bisphenol A in sewage under visible light, Chemosphere, 217, 869–878.
[30] Vo, N.Q.D., Huynh, N.D.T., Le, M.V., Vo, K.D., and Vo, D.V.N., 2020, Fabrication of Ag‐photodeposited TiO2/cordierite honeycomb monolith photoreactors for 2‐naphthol degradation, J. Chem. Technol. Biotechnol., 95 (10), 2628–2637.
[31] Tamer, T.M., Hassan, M.A., Omer, A.M., Baset, W.M.A., Hassan, M.E., El-Shafeey, M.E.A., and Eldin, M.S.M., 2016, Synthesis, characterization and antimicrobial evaluation of two aromatic chitosan Schiff base derivatives, Process Biochem., 51 (10), 1721–1730.
[32] Ren, C., Qiu, W., Zhang, H., He, Z., and Chen, Y., 2015, Degradation of benzene on TiO2/SiO2/Bi2O3 photocatalysts under UV and visible light, J. Mol. Catal. A: Chem., 398, 215–222.
[33] Shifu, C., and Gengyu, C., 2006, The effect of different preparation conditions on the photocatalytic activity of TiO2·SiO2/beads, Surf. Coat. Technol., 200 (11), 3637–3643.
[34] Dong, F., Zhao, W., Wu, Z., and Guo, S., 2009, Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition, J. Hazard. Mater., 162 (2-3), 763–770.
[35] Kamani, H., Ashrafi, S.D., Lima, E.C., Panahi, A.H., Nezhad, M.G., and Abdipour, H., 2023, Synthesis of N-doped TiO2 nanoparticle and its application for disinfection of a treatment plant effluent from hospital wastewater, Desalin. Water Treat., 289, 155–162.
[36] Marques, J., Gomes, T.D., Forte, M.A., Silva, R.F., and Tavares, C.J., 2019, A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor, Catal. Today, 326, 36–45.
[37] Cong, Y., Zhang, J., Chen, F., and Anpo, M., 2007, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity, J. Phys. Chem. C, 111 (19), 6976–6982.
[38] Le, P.H., Hieu, L.T., Lam, T.N., Hang, N.T.N., Truong, N.V., Tuyen, L.T.C., Phong, P.T., and Leu, J., 2018, Enhanced photocatalytic performance of nitrogen-doped TiO2 nanotube arrays using a simple annealing process, Micromachines, 9 (12), 618.
[39] Wu, C., Dong, X., Wang, L., Zhang, L., and Liu, X., 2022, Preparation of N-TiO2/SiO2 composites by solvothermal method and their photocatalytic properties, Mater. Res. Express, 9 (5), 055002.
[40] He, H., Sun, S., Gao, J., Huang, B., Zhao, T., Deng, H., Wang, X., and Pan, X., 2020, Photoelectrocatalytic simultaneous removal of 17α-ethinylestradiol and E. coli using the anode of Ag and SnO2-Sb 3D-loaded TiO2 nanotube arrays, J. Hazard. Mater., 398, 122805.

Article Metrics


Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.