Carbon Paste Electrode-Modified Imprinted Zeolite X and Its Performance as a Potentiometric and Voltammetric Sensor for Cholesterol Analysis

https://doi.org/10.22146/ijc.99700

Miratul Khasanah(1*), Alfa Akustia Widati(2), Nadya Maya Severia(3), Citra Marantika Nur Oktaviana(4), Evrillia Puspitasari(5), Naftalia Wirdatul Ummah(6), Ziana Alviani(7)

(1) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Jl. Dr. Ir. H. Soekarno MERR, Surabaya 60115, Indonesia
(2) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Jl. Dr. Ir. H. Soekarno MERR, Surabaya 60115, Indonesia
(3) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Jl. Dr. Ir. H. Soekarno MERR, Surabaya 60115, Indonesia
(4) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Jl. Dr. Ir. H. Soekarno MERR, Surabaya 60115, Indonesia
(5) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Jl. Dr. Ir. H. Soekarno MERR, Surabaya 60115, Indonesia
(6) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Jl. Dr. Ir. H. Soekarno MERR, Surabaya 60115, Indonesia
(7) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Jl. Dr. Ir. H. Soekarno MERR, Surabaya 60115, Indonesia
(*) Corresponding Author

Abstract


Carbon paste electrode-modified imprinted zeolite X has been developed as a potentiometry and voltammetry sensor to monitor cholesterol levels in the body. This is crucial to detect early health risks caused by high cholesterol levels. The modified electrode was fabricated with a mass ratio of activated carbon, paraffin, and imprinted zeolite X of 12:7:1. Potentiometric measurement produced a linear dynamic range of 10−6–10−3 M, Nernst factor of 27.12 mV/decade, a detection limit of 1.12 × 10−6 M, precision of 99.7% (n = 3), and accuracy of 99.8% (n = 5). Using the electrode for up to 56 measurements over 6 weeks did not significantly decrease its performance. The presence of glucose did not interfere with cholesterol analysis by potentiometry. The modified electrode was applied to analyze cholesterol voltammetrically at the optimum deposition potential of 0.4 V, deposition time of 60 s, and a scan rate of 100 mV/s. Voltammetric analysis of cholesterol resulted in a detection limit of 7.2 mg/L (1.86 µM), precision of 96–99%, accuracy of 74–114%, sensitivity of 7.1 nA.L/mg/cm2, and recovery of 87.2% (n = 3). The glucose and urea in various concentrations cause less than 5% current deviations.

Keywords


cholesterol detection; electrometry; imprinted zeolite X; carbon paste electrode; health risk

Full Text:

Full Text PDF


References

[1] Zárate, A., Manuel-Apolinar, L., Saucedo, R., Hernández-Valencia, M., and Basurto, L., 2016, Hypercholesterolemia as a risk factor for cardiovascular disease: Current controversial therapeutic management, Arch. Med. Res., 47 (7), 491–495.

[2] Li, L.H., Dutkiewicz, E.P., Huang, Y.C., Zhou, H.B., and Hsu, C.C., 2019, Analytical methods for cholesterol quantification, J. Food Drug Anal., 27 (2), 375–386.

[3] Domínguez, R., Barba, F.J., Centeno, J.A., Putnik, H.A., and Lorenzo, J.M., 2018, Simple and rapid method for the simultaneous determination of cholesterol and retinol in meat using normal-phase HPLC technique, 2017, Food Anal. Methods, 11 (2), 319–326.

[4] Hafiane, A., and Genest, J., 2015, High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk, BBA Clin., 3, 175–188.

[5] Bouhoun, M.L., Blondeau, P., Louaffi, Y., and Andrade, F.J., 2021, A paper-based potentiometric platform for determination of water hardness, Chemosensors, 9 (5), 96.

[6] Skoog, D.A., West, D.M., Holer, F.J., and Crouch, S.R., 2014, Fundamental of Analytical Chemistry, 9th Ed., Cengange Learning, Boston, MA, US.

[7] Porada, R., Wenninger, N., Bernhart, C., Fendrych, K., Kochana, J., Baś, B., Kalcher, K., and Ortner, A., 2023, Targeted modification of the carbon paste electrode by natural zeolite and graphene oxide for the enhanced analysis of paracetamol, Microchem. J., 187, 108455.

[8] Yu, H.C., Huang, X.Y., Lei, F.H., Tan, X.C., Wei, Y.C., and Li, H., 2014, Molecularly imprinted electrochemical sensor based on nickel nanoparticle modified electrodes for phenobarbital determination, Electrochim. Acta, 141, 45–50.

[9] Djunaidi, M.C., Afriani, M.D.R., Gunawan, G., and Khasanah, M., 2021, Synthesis of graphite paste/molecularly imprinted polymer (MIP) electrodes based on poly-eugenol as a glucose sensor with potentiometric method, Indones. J. Chem., 21 (4), 816–824.

[10] Mostafiz, B., Bigdeli, S.A., Banan, K., Afsharara, H., Hatamabadi, D., Mousavi, P., Hussain, C.M., Keçili, R., and Ghorbani-Bidkorbeh, F., 2021, Molecularly imprinted polymer-carbon paste electrode (MIP-CPE)-based sensors for the sensitive detection of organic and inorganic environmental pollutants: A review, Trends Environ. Anal. Chem., 32, e00144.

[11] Khasanah, M., Harsini, M., Widati, A.A., and Ibrani, P.M., 2017, The Influence of ascorbic acid, creatine, and creatinine on the uric acid analysis by potentiometry using a carbon paste modified imprinting zeolite electrode, J. Chem. Technol. Metall., 52 (6), 1039–1044.

[12] Khasanah, M., Handajani, U.S., Widati, A.A., Abdulloh, A., and Rindarti, R.R., 2018, Construction and performance of creatinine selective electrode based on carbon paste imprinting zeolite, Anal. Bioanal. Electrochem., 10 (4), 429–438.

[13] Khasanah, M., Widati, A.A., Handajani, U.S., Harsini, M., Ilmiah, B., and Dinda, I., 2020, Imprinted zeolite modified carbon paste electrode as a selective sensor for blood glucose analysis by potentiometry, Indones. J. Chem., 20 (6), 1301–1310.

[14] Rashed, M.N., and Palanisamy, P.N., 2018, “Introductory Chapter: Adsorption and Ion Exchange Properties of Zeolites for Treatment of Polluted Water” in Zeolites and Their Applications, IntechOpen, Rijeka, Croatia.

[15] Lu, X., Liu, L., Liu, H., Tian, G., Peng, G., Zhuo, L., and Wang Z., 2022, Zeolite-X synthesized from halloysite nanotubes and its application in CO2 capture, J. Taiwan Inst. Chem. Eng., 113, 104281.

[16] Khasanah, M., Widati, A.A., Wahyuni, A.S., and Bureni, D.S., 2023, Application of carbon paste electrodes modified with imprinted zeolite X as potentiometric sensors for amitriptyline analysis in pharmaceuticals, Anal. Bioanal. Chem. Res., 10 (3), 339–352.

[17] Masoudian, S.K., Sadighi, S., and Abbasi, A., 2013, Synthesis and characterization of high aluminum zeolite X from technical grade materials, Bull. Chem. React. Eng. Catal., 8 (1), 54–60.

[18] Miller, J.C., and Miller, J.N., 2006, Statistic and Chemometrics for Analytical Chemistry, 6th Ed., Ellis Horward Limited, New York, US.

[19] Egorov, V.V., Zdrachek, E.A., and Nazrov, V.A., 2014, Improved separate solution method for determination of low selectivity coefficients, Anal. Chem., 86 (8), 3693–3696.

[20] Treacy, M.M., and Higgins, J.B., 2007, Collection of Simulated XRD Powder Patterns for Zeolite, 5th Ed., Elsevier, Amsterdam, Netherlands.

[21] Barnaba, C., Rodríguez-Estrada, M.T., Lercker, G., García, H.S., and Medina-Meza, I.G., 2016, Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling, Steroids, 116, 52–59.

[22] Ramirez-Gaona, M., Marcu, A., Pon, A., Guo, A.C., Sajed, T., Wishart, N.A., Karu, N., Djoumbou Feunang, Y., Arndt, D., and Wishart, D.S., 2017, YMDB 2.0: A significantly expanded version of the yeast metabolome database, Nucleic Acids Res., 45 (D1), D440–D445.

[23] Taverniers, I., De Loose, M., and Van Bockstaele, E., 2004, Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance, TrAC, Trends Anal. Chem., 23 (8), 535–552.

[24] Alarfaj, N.A., Aly, F.A., and El-Tohamy, M.F., 2011, Potentiometric determination of cholesterol-reducing drug, ezetimibe using coated wire membrane sensors, Sens. Lett., 9 (5), 1830–1837.

[25] Wang, S., Chen, S., Shang, K., Gao. X., and Wang, X., 2021, Sensitive electrochemical detection of cholesterol using a portable paper sensor based on the synergistic effect of cholesterol oxidase and nanoporous gold, Int. J. Biol. Macromol., 189, 356–362.

[26] Alshgari, R., Nafady, A., Shah, A.A., Aboelmaaref, A., Aftab, U., Ibupoto, M.H., Vigolo, B., Tahira, A., and Ibupoto, Z.H., 2022, Enhanced electrocatalytic properties of Co3O4 nanocrystals derived from hydrolyzed polyethyleneimines in water/ethanol solvents for electrochemical detection of cholesterol, Catalysts, 12 (10), 1176.

[27] Amiri, M., and Arshi, S., 2020, An overview on electrochemical determination of cholesterol, Electroanal., 32 (7), 1391–1407.

[28] Wang, J., 2006, Analytical Electrochemistry, 3rd Ed., John Wiley & Sons, Hoboken, New Jersey, US.

[29] Nantaphol, S., Chailapakul, O., and Siangproh, W., 2015, Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum, Sens. Actuators, B, 207, 193–198.

[30] Ahn, T.T.N., Lan, H., Tam, L.T., Pham, V.H., and Tam, P.D., 2018, Highly sensitive nonenzymatic cholesterol sensor based on zinc oxide nanorods, J. Electron. Mater., 47 (11), 6701–6708.

[31] Kumar, S., Singh, R., Kaushik, B.K., Chen, N.K., Yang, Q.S., and Zhang, X., 2019, LSPR-based Cholesterol Biosensor using Hollow Core Fiber Structure, IEEE Sens. J., 19 (17), 7399–7406.

[32] Ariyanta, H.A., Ivandini, T.A., and Yulizar, Y., 2021, Poly(methyl orange)-modified NiO/MoS2/SPCE for a non-enzymatic detection of cholesterol, FlatChem, 29, 100285.



DOI: https://doi.org/10.22146/ijc.99700

Article Metrics

Abstract views : 1299 | views : 786


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.