Influence of Hydrothermal Parameters on Photocatalytic Activity of BiVO4 for Degradation of Methylene Blue

Vinh-Tien Truong(1), Pham-Ngoc-My Le(2), Minh-Vien Le(3*)
(1) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 720325, Vietnam
(2) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 720325, Vietnam
(3) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 720325, Vietnam
(*) Corresponding Author
Abstract
A facile hydrothermal method has been developed to improve the intrinsic photocatalytic activity of BiVO4. By assessing the effects of three key hydrothermal parameters (temperature, time, and pH levels) on catalytic performance, optimal conditions for maximizing photocatalytic activity were identified. Characterization through XRD, FE-SEM, and UV-DRS demonstrates the crucial role of the (040) facet and reduced non-uniform compressive strain in enhancing the photocatalytic activity of bismuth vanadate. The sample synthesized at 200 °C, pH 1, with 10 h of hydrothermal treatment shows significant decolorization of methylene blue with a comparable rate constant. This study presents a promising approach to synthesizing high-performance photocatalysts through a straightforward synthesis process without the use of directing agents.
Keywords
References
[1] Boretti, A., and Rosa, L., 2019, Reassessing the projections of the World Water Development Report, npj Clean Water, 2 (1), 15.
[2] Desore, A., and Narula, S.A., 2018, An overview on corporate response towards sustainability issues in textile industry, Environ. Dev. Sustainability, 20 (4), 1439–1459.
[3] Fito, J., Abewaa, M., Mengistu, A., Angassa, K., Ambaye, A.D., Moyo, W., and Nkambule, T., 2023, Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant, Sci. Rep., 13 (1), 5427.
[4] Malathi, A., Madhavan, J., Ashokkumar, M., and Arunachalam, P., 2018, A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications, Appl. Catal., A, 555, 47–74.
[5] Drisya, K.T., Solís-López, M., Ríos-Ramírez, J.J., Durán-Álvarez, J.C., Rousseau, A., Velumani, S., Asomoza, R., Kassiba, A., Jantrania, A., and Castaneda, H., 2020, Electronic and optical competence of TiO2/BiVO4 nanocomposites in the photocatalytic processes, Sci. Rep., 10 (1), 13507.
[6] Kamble, G.S., and Ling, Y.C., 2020, Solvothermal synthesis of facet-dependent BiVO4 photocatalyst with enhanced visible-light-driven photocatalytic degradation of organic pollutant: assessment of toxicity by zebrafish embryo, Sci. Rep., 10 (1), 12993.
[7] Rather, R.A., Mehta, A., Lu, Y., Valant, M., Fang, M., and Liu, W., 2021, Influence of exposed facets, morphology and hetero-interfaces of BiVO4 on photocatalytic water oxidation: A review, Int. J. Hydrogen Energy, 46 (42), 21866–21888.
[8] Wang, S., Wan, K., Feng, J., Yang, Y., and Wang, S., 2025, BiVO4 photoanodes with enhanced photoelectrochemical performance: Preparation, modification and emerging applications, J. Mater. Sci. Technol., 217, 182–220.
[9] Chen, X., Dong, Q., Chen, S., Zhang, Z., Zhang, X., Di, Y., Jiang, A., Zhang, D., and Li, T., 2023, Halloysite nanotubes supported BiVO4/BaSnO3 p-n heterojunction photocatalysts for the enhanced degradation of methylene blue under visible light, Colloids Surf., A, 664, 131143.
[10] Tran, T.H., Le, P.N.M., Ngo, T.H., Huynh, N.D.T., Oh, W.C., and Le, M.V., 2024, An investigation on the visible-light-driven Z-scheme BiVO4/g-C3N4 heterostructures: Performance, evaluation, and mechanism for dye and antibiotics degradation, Mater. Today Commun., 40, 109373.
[11] Mohamed, A.M., Abdelwahab, S.M., Elsawy, N.M., Ahmed, N.A., and Raafat, A.I., 2024, E-beam irradiation-induced synthesis of hydroxyethyl cellulose/(Cu2O-rGO)/BiVO4-based nanocomposite for photocatalytic remediation of wastewater under visible light, Int. J. Biol. Macromol., 258, 128681.
[12] Prabhavathy, S., and Arivuoli, D., 2022, Visible light-induced silver and lanthanum co-doped BiVO4 nanoparticles for photocatalytic dye degradation of organic pollutants, Inorg. Chem. Commun., 141, 109483.
[13] Xu, X., Du, M., Chen, T., Xiong, S., Wu, T., Zhao, D., and Fan, Z., 2016, New insights into Ag-doped BiVO4 microspheres as visible light photocatalysts, RSC Adv., 6 (101), 98788–98796.
[14] Pham, M.Q., Ngo, T.M., Nguyen, V.H., Nong, L.X., Vo, D.V.N., Tran, T.V., Nguyen, T.D., Bui, X.T., and Nguyen, T.D., 2020, Facile solvothermal synthesis of highly active monoclinic scheelite BiVO4 for photocatalytic degradation of methylene blue under white LED light irradiation, Arabian J. Chem., 13 (11), 8388–8394.
[15] Wang, D., Jiang, H., Zong, X., Xu, Q., Ma, Y., Li, G., and Li, C., 2011, Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation, Chem. - Eur. J., 17 (4), 1275–1282.
[16] Liu, J., Li, B., Kong, L., Xiao, Q., and Huang, S., 2023, Surfactants-assisted morphological regulation of BiVO4 nanostructures for photocatalytic degradation of organic pollutants in wastewater, J. Phys. Chem. Solids, 172, 111079.
[17] Zhu, M., Yang, S., Wang, D., Hogan, J., and Sadrzadeh, M., 2024, CTAC-assisted monoclinic BiVO4 with oxygen defects for efficient photocatalytic performances: A combined experimental and DFT study, J. Alloys Compd., 990, 174404.
[18] Liu, M., Zheng, L., Deng, J., Gao, J., Su, K., Sheng, X., He, J., Feng, D., Guo, L., Chen, C., and Li, Y., 2023, Construction of Ag nanoparticle decorated AgBr/BiVO4 shell/core structure plasmonic photocatalysts towards high photocatalytic elimination of contaminations under visible light, J. Alloys Compd., 931, 167584.
[19] Baral, B., and Parida, K., 2020, {040/110} Facet isotype heterojunctions with monoclinic scheelite BiVO4, Inorg. Chem., 59 (14), 10328–10342.
[20] Yang, Y., Gong, K., Shi, Q., Wu, X., Li, K., Tong, X., Li, J., Zhang, L., Wang, X., Li, B., Bao, X., and Meng, S., 2024, Facet-dependent Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 dual S-scheme photocatalyst as an efficient visible-light-driven peroxymonosulfate activator for norfloxacin degradation, Langmuir, 40 (17), 9155–9169.
[21] Wang, H., Liu, X., Wu, D., Zhao, Y., Li, N., Li, Y., Fan, X., Xia, Q., Zhang, F., and Peng, W., 2023, Role variations of MnOx on monoclinic BiVO4 (110)/(040) facets for enhanced Photo-Fenton reactions, J. Colloid Interface Sci., 646, 219–227.
[22] Hu, Y., Gao, Y., Liu, F., Tian, Y., Wang, Q., Zeng, D., Shen, T., Song, J., Guan, R., and Yuan, H., 2023, The {010} and {110} facets of BiVO4 were selectively modified by Cu and g-C3N4 to enhance its visible light photocatalytic performance, Sep. Purif. Technol., 323, 124471.
[23] de Matos Rodrigues, M.H., Borges, K.C.M., Tello, A.C.M., Roca, R.A., de Fátima Gonçalves, R., da Silva, A.B.F., Longo, E., and Godinho, M.J., 2023, Effect of pH on the synthesis of BiVO4 to improve photocatalysis and antimicrobial properties, Mater. Chem. Phys., 296, 127198.
[24] Zhao, Y., Li, R., Mu, L., and Li, C., 2017, Significance of crystal morphology controlling in semiconductor-based photocatalysis: A case study on BiVO4 photocatalyst, Cryst. Growth Des., 17 (6), 2923–2928.
[25] Guo, Y., Wei, X., Zhang, K., Zhang, J., Mi, L., Wu, Z., Wang, G., Li, Y., Huang, Q., Fu, W., Zhang, Y., Hou, A., Wang, H., and Qi, X., 2023, Study on the growth mechanism of dispersed monoclinic BiVO4 in hydrothermal process and its photocatalytic activity, J. Dispersion Sci. Technol., 44 (9), 1549–1561.
[26] Choi, M., 2021, Photocatalytic and photoelectrochemical activities of strained BiVO4, Appl. Phys. Lett., 118 (16), 161901.
[27] Xie, S., Shen, Z., Zhang, H., Cheng, J., Zhang, Q., and Wang, Y., 2017, Photocatalytic coupling of formaldehyde to ethylene glycol and glycolaldehyde over bismuth vanadate with controllable facets and cocatalysts, Catal. Sci. Technol., 7 (4), 923–933.
[28] Zheng, L.L., Tian, L., Wang, D., Chen, Y., Tang, Q.Q., Xing, Q.J., Liu, X.Z., Wu, D.S., and Zou, J.P., 2023, Facet engineering of BiVO4 photocatalyst for the synergetic adsorption and activation of persulfate for organic pollutants degradation, Chem. Eng. J., 473, 145507.
[29] Mezyen, M., El Fidha, G., Bitri, N., Harrathi, F., Ly, I., and Llobet, E., 2023, Visible light activated SnO2:Dy thin films for the photocatalytic degradation of methylene blue, RSC Adv., 13 (44), 31151–31166.
[30] Song, Y., Liu, Y., and Ou, X., 2020, Heat-rate-controlled hydrothermal crystallization of high-performance LiMn0.7Fe0.3PO4 cathode material for lithium-ion batteries, Ceram. Int., 46 (4), 5069–5076.
[31] Dolabella, S., Borzì, A., Dommann, A., and Neels, A., 2022, Lattice strain and defects analysis in nanostructured semiconductor materials and devices by high‐resolution X‐ray diffraction: Theoretical and practical aspects, Small Methods, 6 (2), 2100932.
[32] Fernandez, E.N., van de Krol, R., and Abdi, F.F., 2024, Tuning the optical and photoelectrochemical properties of epitaxial BiVO4 by lattice strain, Small Struct., 2400097.
[33] Ozaki, Y., Suzuki, Y., Hawai, T., Saito, K., Onishi, M., and Ono, K., 2020, Automated crystal structure analysis based on blackbox optimisation, npj Comput. Mater., 6 (1), 75.
[34] Riemke, F.C., Ücker, C.L., Rangel, E.M., Cozza, L., Almeida, S.L., Ferrer, M.M., Cava, S., L.V. Carreno, N., Ceretta, E., and Raubach, C.W., 2023, Theoretical and experimental photocatalytic implications of Co ions upon the SrTiO3 lattice, Chem. Phys., 567, 111772.
[35] Manh, D.H., Ngoc Nha, T.T., Hong Phong, L.T., Nam, P.H., Thanh, T.D., and Phong, P.T., 2023, Determination of the crystalline size of hexagonal La1-xSrxMnO3 (x = 0.3) nanoparticles from X-ray diffraction - A comparative study, RSC Adv., 13 (36), 25007–25017.
[36] Li, Z., Chen, X., Wang, L., Xiao, M., Shang, Y., Han, W., and Lv, Y., 2023, Photo-induced surface oxygen vacancies for effective promotion of the photocatalytic properties over hierarchical layered Bi2O2(OH)NO3, Chem. Phys., 575, 112081.
[37] Langford, J.I., 1992, The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition, NIST Spec. Publ., 846, 110–126.
[38] Motevalizadeh, L., Heidary, Z., and Abrishami, M.E., 2014, Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods, Bull. Mater. Sci., 37 (3), 397–405.
[39] Muhammed Shafi, P., and Chandra Bose, A., 2015, Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals, AIP Adv., 5 (5), 057137.
[40] Igenepo John, K., Abdul Adenle, A., Timothy Adeleye, A., Pearl Onyia, I., Amune-Matthews, C., and Omorogie, M.O., 2021, Unravelling the effect of crystal dislocation density and microstrain of titanium dioxide nanoparticles on tetracycline removal performance, Chem. Phys. Lett., 776, 138725.
[41] Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., Yao, W., Liu, Z., and Yue, X., 2022, Recent development in defects engineered photocatalysts: An overview of the experimental and theoretical strategies, Energy Environ. Mater., 5 (1), 68–114.
[42] Zhang, E., Zhang, M., and Kato, M., 2024, Effect of dislocations on carrier recombination and photoelectrochemical activity in polished and unpolished TiO2 and SrTiO3 crystals, J. Appl. Phys., 135 (4), 045102.
[43] Jo, W.J., Kang, H.J., Kong, K.J., Lee, Y.S., Park, H., Lee, Y., Buonassisi, T., Gleason, K.K., and Lee, J.S., 2015, Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light, Proc. Natl. Acad. Sci. U. S. A., 112 (45), 13774–13778.
[44] Hill, C., Weber, M.C., Lehmann, J., Leinen, T., Fiebig, M., Kreisel, J., and Guennou, M., 2020, Role of the ferroelastic strain in the optical absorption of BiVO4, APL Mater., 8 (8), 081108.
[45] Tan, G., Zhang, L., Ren, H., Wei, S., Huang, J., and Xia, A., 2013, Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method, ACS Appl. Mater. Interfaces, 5 (11), 5186–5193.
[46] Wang, X., Mu, B., Zhang, A., An, X., and Wang, A., 2019, Effects of different pH regulators on the color properties of attapulgite/BiVO4 hybrid pigment, Powder Technol., 343, 68–78.
[47] Jubu, P.R., Danladi, E., Ndeze, U.I., Adedokun, O., Landi, S., Haider, A.J., Adepoju, A.T., Yusof, Y., Obaseki, O.S., and Yam, F.K., 2024, Comment about the use of unconventional Tauc plots for bandgap energy determination of semiconductors using UV–vis spectroscopy, Results Opt., 14, 100606.
[48] Zanatta, A.R., 2024, Temperature-dependent optical bandgap of TiO2 under the anatase and rutile phases, Results Phys., 60, 107653.
[49] Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., and Khan, I., 2022, Review on methylene blue: Its properties, uses, toxicity and photodegradation, Water, 14 (2), 242.
[50] Liu, G., Zhu, Y., Yan, Q., Wang, H., Wu, P., Shen, Y., and Doekhi-Bennani, Y., 2021, Tuning electron transfer by crystal facet engineering of BiVO4 for boosting visible-light driven photocatalytic reduction of bromate, Sci. Total Environ., 762, 143086.
[51] Kim, C.W., Ji, S., Kang, M.J., Park, H., Li, F., Cheng, H.M., and Kang, Y.S., 2019, Energy band edge alignment of anisotropic BiVO4 to drive photoelectrochemical hydrogen evolution, Mater. Today Energy, 13, 205–213.
[52] Yang, J., Wang, D., Zhou, X., and Li, C., 2013, A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution, Chem. - Eur. J., 19 (4), 1320–1326.
[53] Liu, X., Miao, X., Zhang, X., Wang, Y., and Zhu, T., 2023, Influence of crystal planes exposure ratio on photocatalytic and antimicrobial properties of m-BiVO4 under LED visible light, Inorg. Chem. Commun., 148, 110357.
[54] Neto, N.F.A., Nunes, T.B.O., Li, M., Longo, E., Bomio, M.R.D., and Motta, F.V., 2020, Influence of microwave-assisted hydrothermal treatment time on the crystallinity, morphology and optical properties of ZnWO4 nanoparticles: Photocatalytic activity, Ceram. Int., 46 (2), 1766–1774.
[55] He, T., Zhao, Y., Benetti, D., Moss, B., Tian, L., Selim, S., Li, R., Fan, F., Li, Q., Wang, X., Li, C., and Durrant, J.R., 2024, Facet-engineered BiVO4 photocatalysts for water oxidation: Lifetime gain versus energetic loss, J. Am. Chem. Soc., 146 (39), 27080–27089.
[56] Zakir, O., Ait-Karra, A., Idouhli, R., Khadiri, M., Dikici, B., Zegzouti, A., Abouelfida, A., and Outzourhit, A., 2025, A study on the influence of metal Ag, Cu, and Fe doping on the morphological, structural, and photocatalytic activity of TiO2 nanostructures, J. Alloys Compd., 1010, 177141.

Article Metrics



Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.