Molecular, Morphological and Production Performance Analysis of Introduced Black Tilapia Strains Oreochromis sp.

https://doi.org/10.22146/jfs.103567

Dwi Hany Yanti(1), Dinar Tri Soelistyowati(2), Odang Carman(3), Dian Hardiantho(4), Hasan Nasrullah(5), Alimuddin Alimuddin(6*)

(1) Department of Aquaculture, Faculty of Fisheries and Marine, IPB University, Bogor, West Java, Indonesia - Sukabumi Freshwater Aquaculture Center, Selabintana, Sukabumi, West Java, Indonesia
(2) Department of Aquaculture, Faculty of Fisheries and Marine, IPB University, Bogor, West Java, Indonesia
(3) Department of Aquaculture, Faculty of Fisheries and Marine, IPB University, Bogor, West Java, Indonesia
(4) Sukabumi Freshwater Aquaculture Center, Selabintana, Sukabumi, West Java, Indonesia
(5) Department of Aquaculture, Faculty of Fisheries and Marine, IPB University, Bogor, West Java, Indonesia
(6) Department of Aquaculture, Faculty of Fisheries and Marine, IPB University, Bogor, West Java, Indonesia
(*) Corresponding Author

Abstract


Evaluating the introduced black tilapia strains from molecular to production performance is essential in aquaculture to ensure genetic purity, reproductive efficiency and sustainable production improvement. However, uncontrolled hybridization and limited molecular evaluation of introduced strains have often led to inconsistent performance in hatcheries and grow-out systems. This study aimed to identify and characterize introduced black tilapia strains from Thailand (MAG NIN, BIG NIN and GIFT) compared to locally developed SAKTI strain from Indonesia based on molecular, morphological and production performance aspects. Molecular characterization was performed using cytochrome oxidase subunit I (COI) gene sequences from three fish per strain. Morphological aspects were assessed based on body dimensions and proportions from ten fish per strain. Production performance focused on reproductive and growth parameters. Reproductive parameters  including fecundity, egg size, hatching rate and larval survival rate, while growth performance parameters comprised specific growth rate, aquaculture productivity, feed conversion ratio, sex ratio and survival rate. Results revealed that all introduced strains shared the same species as the SAKTI strain, identified as Oreochromis niloticus. Morphologically, BIG NIN exhibited a significantly longer body shape compared to other strains (p < 0.05). BIG NIN also demonstrated superior production performance (p < 0.05). These findings highlight the importance of integrating molecular and performance-based evaluations to support selective breeding and strain improvement  programs for enhancing tilapia productivity.


Keywords


black tilapia, broodstock, morphological analysis, production performance, selective breeding

Full Text:

PDF


References

Abaho, I., P. Akoll, C.L.W. Jones & C. Masembe. 2022. Dietary inclusion of pine pollen alters sex ratio and promotes growth of nile tilapia (Oreochromis niloticus, L. 1758). Aquaculture Reports. 27: 101407. https://doi.org/10.1016/j.aqrep.2022.101407.

Atriani, A., A. Ardiansyah, H. Hasniar, A. Indrayani, B. Baiduri & S. Suryati. 2024. Formation of male sex tilapia larvae (Oreochromis niloticus) using natural methyltestosterone hormone. Asian Journal of Biochemistry, Genetics and Molecular Biology. 16 (2): 32-39. https://doi.org/10.9734/ajbgmb/2024/v16i2359

Bostock, J., A. Albalat, S. Bunting, W.A. Turner, A.D. Mensah & D.C. Little. 2022. Mixed-sex nile tilapia (Oreochromis niloticus) can perform competitively with mono-sex stocks in cage production. Aquaculture. 557: 738315. https://doi.org/10.1016/j.aquaculture.2022.738315.

de Oliveira, C.A.L., R.P. Ribeiro, G.M. Yoshida, N.M. Kunita, G.S. Rizzato, S.N. de Oliveira, A.I. dos Santos & H.N. Nguyen. 2016. Correlated changes in body shape after five generations of selection to improve growth rate in a breeding program for nile tilapia Oreochromis niloticus in Brazil. J. Appl. Genetics. 57: 487-493. https://doi.org/10.1007/s13353-016-0338-5

Debes P.V., S.B.C. Lobligeois & E. Svavarsson. 2025. Genetic and environmental (Co) variation of egg size, fecundity, and growth traits in Arctic Charr. Evolutionary Applications. 18: e70135. https://doi.org/10.1111/eva.70135

Dee, M.M., A. Leungnaruemitchai, W. Suebsong, D. Somjai, K. Nimnual, L. Abdurahman & K. Nganing. 2021. A Comparative growth performance and survival of different genetic strains of nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.) in a floating net cage culture farming in The Cirata Lake, West Java, Indonesia. Thai. J. Agri. Sci. 54 (4): 280-293. https://www.cabidigitallibrary.org/doi/full/10.5555/20220241682

dos Santos, V.B., V.V. Silva, M.V. de Almeida, E.A. Mareco & R.A.S. Salomão. 2019. Performance of nile tilapia Oreochromis niloticus strains in Brazil: A comparison with Philippine Strain. Journal of Applied Animal Research. 47 (1): 72-78. https://doi.org/10.1080/09712119.2019.1571495.

El-Hack M.E.A., M.T. El-Saadony, M.M. Nader, H.M. Salem, A.M. El-Tahan, S.M. Soliman & A.F. Khafaga. 2022. Effect of environmental factors on growth performance of nile tilapia (Oreochromis niloticus). International Journal of Biometeorology. 66: 2183-2194. https://doi.org/10.1007/s00484-022-02347-6.

El-Sayed, A.F.M. 2019. Tilapia Culture. Amsterdam, Netherlands: Elsevier Science & Technology. https://www.cabidigitallibrary.org/doi/abs/10.1079/9780851990149.0000.

Food and Agriculture Organization of the United Nation. 2022. Fisheries and Aquaculture Information and Statistics Branch. www.fao.org/fishery/en/statistics/software/fishstatj.

Islam M., H. Khanom, N. Islam, F. Fariha, B.A. Paray, Md.M. Zahangir & Md. Shahjahan. 2025. Probiotics and Spirulina platensis improved growth performance of nile tilapia (Oreochromis niloticus) by upgrading intestinal morphology and activating GH/IGF axis. Aquaculture Research. https://doi.org/10.1155/are/1839162

Iyiola, O.A., L.M. Nneji, M.K. Mustapha, C.G. Nzeh, S.O. Oladipo, I.C. Nneji, A.O. Okeyoyin, C.D. Nwani, O.A. Ugwumba, A.A.A. Ugwumba, E.O. Faturoti, Y. Wang, J. Chen, W.Z. Wang & A.C. Adeola. 2018. DNA barcoding of economically important freshwater fish species from North-Central Nigeria uncovers cryptic diversity. Ecology and Evolution. 8: 6932-6951. https://doi.org/10.1002/ece3.4210.

Kasayev, T & T. Arisuryanti. 2022. COI-based DNA barcoding of selais fish from Arut River, Central Kalimantan, Indonesia. Journal of Tropical Biodiversity and Biotechnology. 7 (1): jtbb66510. https://doi.org/10.22146/jtbb.66510

Kwikiriza, G., M.J. Yegon, N. Byamugisha, A. Beingana, F. Atukwatse, A. Barekye, J.K. Nattabi & H. Meimberg. 2023. Morphometric variations of nile tilapia (Oreochromis niloticus Linnaeus, 1758) local strains collected from different fish farms in Southwestern Highland Agro-Ecological Zone (SWHAEZ), Uganda: Screening strains for aquaculture. Fishes. 8: 217. https://doi.org/10.3390/fishes8040217.

Mehar, M., W. Mekkawy, C. McDougall & J.A.H. Benzie. 2019. Fish trait preferences: A review of existing knowledge and implications for breeding programmes. Reviews in Aquaculture. 1-24. https://doi.org/10.1111/raq.12382

Mengistu S.B., H.A. Mulder, J.W.M. Bastiaansen, J.A. Benzie, H.L. Khaw, T.Q. Trinh & H. Komen. 2022. Fluctuations in growth are heritable and a potential indicator of resilience in nile tilapia (Oreochromis niloticus). Aquaculture. 560: 738481. https://doi.org/10.1016/j.aquaculture.2022.738481

Montoya-López, A., C. Moreno-Arias, A. Tarazona-Morales, M. Olivera-Angel & J. Betancur. 2019. Body shape variation between farms of tilapia (Oreochromis sp.) in Colombian Andes using landmark-based geometric morphometrics. Latin American Journal of Aquatic Research. 47 (1): 194-200. http://dx.doi.org/10.3856/vol47-issue1-fulltext-23

Moses, M., L.J. Chauka, D.J. de Koning, C. Palaiokostas & M.S.P. Mtolera. 2021. Growth performance of five different strains of nile tilapia (Oreochromis niloticus) introduced to Tanzania reared in fresh and brackish waters. Scientific Reports. 11: 11147. https://doi.org/10.1038/s41598-021-90505-y.

Murphy, S., S.M. Cole, A.M. Kaminski, H. Charo-Karisa, R.K. Basiita, C. McDougall, K. Kakwasha, T. Mulilo, S. Rajaratnam & W. Mekkawy. 2024. A gendered conjoint analysis of tilapia trait preference rankings among urban consumers in Zambia: Evidence to inform genetic improvement programs. Aquaculture. 591: 741110. https://doi.org/10.1016/j.aquaculture.2024.741110.

Nascimento, B.M., T.S. de Paula & P.M.M. Brito. 2023. DNA barcode of tilapia fish fillet from The Brazilian market and a standardized COI haplotyping for molecular identification of Oreochromis spp. (Actinopterygii, Cichlidae). Forensic Science International: Animals and Environments. 3: 100059. https://doi.org/10.1016/j.fishae.2022.100059.

Nobrega, R.O., J.F. Banze, R.O. Batista & D.M. Fracalossi. 2020. Improving winter production of nile tilapia: What can be done. Aquaculture Reports. 18: 100453. https://doi.org/10.1016/j.aqrep.2020.100453.

Nuryanto, A., G. Amalia, D. Khairani, H. Pramono & D. Bhagawati. 2018. Molecular characterization of four giant gourami strains from Java and Sumatra. Biodiversitas. https://doi.org/10.13057/biodiv/d190228

Ordoñez, J.F.F., M.F.H. Ventolero & M.D. Santos. 2016. Maternal mismatches in farmed tilapia strains (Oreochromis spp.) in the Philippines as revealed by mitochondrial COI gene. Mitochondrial DNA Part A. https://doi.org/10.3109/24701394.2016.1149824

Petersons, A., J. Carlson & W. Mathieson. 2023. Improving yields in multi-analyte extractions by utilizing post-homogenized tissue debris. Journal of Histochemistry and Cytochemistry. 71 (5): 273-288. https://doi.org/10.1369/00221554231172823

Ricker, W.E. 2009. Introduction: Methods of Assessment of Fish Production in Fresh Waters 2nd Edition. IBP Handbook No. 3. Blackwell. Oxford. 348 pp.

S.N.I. Standar Nasional Indonesia Nomor 6141 Tahun 2009 Tentang Produksi Benih Ikan Nila Hitam (Oreochromis niloticus Bleeker) Kelas Benih Sebar.

Sallam G.R., A.I. Shehata, M.F. El Basuini, Y.J. Habib, S. Henish, N.A.A. Rahman, Y.M. Hassan, W.M. Fayed, A.M. El-Sayed & H.A. Aly. 2024. Integrated biofloc technology in red tilapia aquaculture: Salinity-dependent effects on water quality, parental stock physiology, reproduction, and immune responses. Aquaculture International. 32: 8731-8761. https://doi.org/10.1007/s10499-024-01588-z

Smalås A., A. Per-Arne & R. Knudsen. 2017. The trade-off between fecundity and egg size in a polymorphic population of Arctic charr (Salvelinus alpinus (L.)) in Skogsfjordvatn, subarctic Norway. Ecology and Evolution 7: 2018-2024. https://doi.org/10.1002/ece3.2669

Tamura, K., G. Stecher & S. Kumar. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mo. Biol. Evol. 38 (7): 3022-3027. https://doi:10.1093/molbev/msab120.

Teletchea, F. 2021. Fish domestication in aquaculture: 10 unanswered questions. Animal Frontiers. https://doi.org/10.1093/af/vfab012

Wang Q., Y. Yan, Y. Tao, S. Lu, P. Xu & J. Qiang. 2023. Transcriptional knock-down of mstn encoding myostatin improves muscle quality of nile tilapia (Oreochromis niloticus). Marine Biotechnology 25: 951-965. https://doi.org/10.1007/s10126-023-10252-1

Ward, R.D., T.S. Zemlak, B.H. Innes, P.R. Last & P.D.N. Hebert. 2005. DNA Barcoding Australia’s Fish Species. Phil. Trans. R. Soc. B. 360: 1847-1857. https://doi.org/10.1098/rstb.2005.1716

Yu J., D. Li, J. Zhu, Z. Zou, W. Xiao, B. Chen & H. Yang. 2022. Effects of different oxytocin and temperature on reproductive activity in nile tilapia (Oreochromis niloticus): Based on sex steroid hormone and GtHR gene expression. Fishes. 7: 316. https://doi.org/10.3390/fishes7060316

How to Cite this Article:

Yanti, D.H., D.T. Soelistyowati, O. Carman, D. Hardiantho, H. Nasrullah& A. Alimuddin. 2025. Molecular, morphological and production performance analysis of introduced black tilapia strains Oreochromis sp. Jurnal Perikanan Universitas Gadjah Mada. 27 (2): xx-xx. https://doi.org/10.22146/jfs.103567



DOI: https://doi.org/10.22146/jfs.103567

Article Metrics

Abstract views : 342 | views : 2

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Jurnal Perikanan Universitas Gadjah Mada

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats