Optimizing Red Tilapia Juvenile (Oreochromis niloticus) Nursery in Recirculating Aquaculture with Ultrafine Bubbles System at Variable Stocking Densities
Ujang Subhan(1*), Isni Meisani(2), Azka Reyza Afriza(3), Isni Nuruhwati(4), Roffi Grandiosa(5), Muhammad Abdul Aziz Al Mujahid(6)
(1) Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia - Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, West Java, Indonesia
(2) Fisheries Department, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
(3) Fisheries Department, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
(4) Fisheries Department, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
(5) Fisheries Department, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
(6) The University of Tokyo, Graduate School of Agricultural and Life Science, Tokoyo, Japan
(*) Corresponding Author
Abstract
The increased demand for red tilapia (Oreochromis niloticus) production requires a sufficient supply of high-quality juveniles. Technological innovation is crucial for developing quantifiable, highly productive, efficient, environmentally sustainable, and ecologically sound juvenile production systems. This study aimed to analyse the effect of high stocking density on the growth performance of red tilapia juveniles cultured using ultrafine bubble technology in a recirculating aquaculture system (UFBs-RAS). A completely randomised experimental design was used with four stocking density treatments: one control treatment (4 fish/L with aeration) and three treatments under the UFBs-RAS system at 4, 6, and 8 fish/L densities. Each treatment was replicated four times. The juvenile red tilapia used in this study had an average initial total length of 4.34 ± 0.23 cm and a weight of 1.47 ± 0.31 g. They were obtained from fishpond research at the FINDER UCoE Experimental Station, Universitas Padjadjaran. The findings indicated that UFBs-RAS facilitated optimal production performance, even at the maximum stocking density of 8 fish per liter. The performance metrics comprised a survival rate of 98.75%, a specific growth rate in weight of 4.93 ± 0.062%/d, a specific growth rate in length of 3.88 ± 0.05%/d, a protein efficiency ratio of 2.48 ± 0.02, a feed conversion efficiency of 96.5 ± 0.58%, and a coefficient of variation of 33.7 ± 1.2%. These data validate that incorporating UFBs-RAS is a viable and efficient method to improve the quality and productivity of red tilapia juveniles.
Keywords
Full Text:
PDFReferences
Abdel-Tawwab, M., A. E. Hagras, H. A. M. Elbaghdady & M. N Monier. 2015. Effects of dissolved oxygen & fish size on nile tilapia, Oreochromis niloticus (L.): Growth performance, whole-body composition, & innate immunity. Aquaculture International. 23 (5): 1261-1274. https://doi.org/10.1007/s10499-015-9882-y
Ahmed, N & G.M. Turchini. 2021. Recirculating Aquaculture Systems (RAS): Environmental solution and climate change adaptation. Journal of Cleaner Production 297: 126604. https://doi.org/10.1016/j.jclepro.2021.126604
Almazán-Rueda, P., J.W. Schrama & J.A.J. Verreth. 2004. Behavioural responses under different feeding methods and light regimes of the african catfish (Clarias gariepinus) juveniles. Aquaculture. 231 (1-4): 347-359. https://doi.org/10.1016/J.Aquaculture.2003.11.016
Andinet, T., I. Kim & J.Y. Lee. 2016. Effect of microbubble generator operating parameters on oxygen transfer efficiency in water. Desalination & Water Treatment. 57 (54):26327-35. https://doi.org/10.1080/19443994.2016.1178604
Bernardi, F., I.V. Zadinelo, H.J. Alves, F. Meurer & L.D. Santos. 2018. Chitins & chitosans for the removal of total ammonia of aquaculture effluents. Aquaculture. 483 (October 2017): 203–212. https://doi.org/10.1016/j.aquaculture.2017.10.027
Bidlack, W.R. 2000. Nutritional Biochemistry, 2nd Ed. Tom Brody. San Diego, 1999. Journal of the American College of Nutrition. 19 (3): 41920. https://doi.org/10.1080/07315724.2000.10718940
Biswas, G., A.R. Thirunavukkarasu, J.K. Sundaray & M. Kailasam. 2010. Optimization of feeding frequency of asian seabass (Lates calcarifer) Juvenile reared in net cages under a brackishwater environment. Aquaculture. 305: 26-31. https://doi.org/10.1016/j.aquac ulture.2010.04.002
Bombardelli, R.A., F. Meurer & M.A. Syperreck. 2004. Metabolismo Proteico em Peixes. Arq. Ciênc. vet zool Unipar. 7 (1), 69–79 (ISSN: 1982-1131).
Borbosa, J.M., S.S.S. Brugiolo, J. Carolsfeld & S.S. Leitao. 2006. Heterogeneous growth in fingerlings of the nile tilapia Oreochromis niloticus: Effects of density & initial size variability. Braz. J. Biol. 66 (2A): 537-541. https://doi.org/10.1590/s1519-69842006000300020
Briggs, M.R.D & S.T. Fing-Smith. 2002. The effect of zcolites & other alumino silicate clays on water quality at various salinities. Aqua. Research. 27: 301-311.
Buentello, J.A., D.M. Gatlin & N.H. Neill. 2000. Effects of water temperature & dissolved oxygen on daily feed consumption, feed utilization & growth of channel catfish (Ictalurus punctatus). Aquaculture. 182 (3–4): 339-352. https://doi.org/10.1016/S0044-8486(99)00274-4
Burggren, W.W., J. F. Mendez-Sanchez, G.M. Bautista, E. Peña, R.M. García & C.A.A. González. 2019. Developmental changes in oxygen consumption & hypoxia tolerance in the heat & hypoxia-adapted tabasco line of the nile tilapia Oreochromis niloticus, with a survey of the metabolic literature for the genus oreochromis. Journal of Fish Biology. 94 (5): 732-744. https://doi.org/10.1111/jfb.13945
Carbonara, P., M. Dioguardi, M. Cammarata, W. Zupa, M. Vazzana, M. Teresa Spedicato & G. Lembo. 2019. Basic Knowledge of social hierarchies & physiological profile of reared sea bass Dicentrarchus labrax (L.) Plos One 14 (1): e0208688. https://doi.org/10.1371/journal. pone.0208688
Chiu, P.S., C. Yeong-Torng, H. Cheng-Hsuan, H. Shine-Wei, H. JianWei & Y. Shinn-Lih. 2020. Effects of stocking density on growth performance, survival & size heterogeneity of juvenile longfin batfish Platax teira. Aquaculture Research. 51 (12).
Danaher, J.J., R.C. Schultz, J.E. Rakocy & D.S. Bailey. 2013. Alternative solids removal for warm water recirculating raft aquaponic systems. Journal of The World Aquaculture Society, 44 (3): 374-383. https://ui.adsabs.harvard.edu/link_gateway/2013JWAS...44..374D/doi:10.1111/jwas.12040
Dawood, A.M., K. Madkour &H. Sewilam. 2023. Polyculture of european sea bass & tilapia in aquaculture systems recirculation with brackish water: effects on performance growth, feed utilization, & health status. Aquaculture & Fisheries. https://doi.org/10.1016/j.aaf.2023.11.001
Duan, Y., X. Dong, X. Zhang & Z. Miao. 2011. Effects of dissolved oxygen concentration & stocking density on the growth, energy budget & body composition of juvenile japanese flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture Research. 42 (3): 407-416. https://doi.org/10.1111/j.1365-2109.2010.02635.x
Durborow, R.M., D.M. Crosby & M.W. Brunson. 1997. Ammonia in Fish Ponds. SRAC Publication. 463: 1-2. http://www.aces.edu/dept/fisheries/aquaculture/waterquality.php
Effendi, H., B.A. Utomo & G.M. Darmawangsa. 2015. Phytoremediation of freshwater crayfish (Cherax quadricaarinatus) culture wastewater with spinach (Ipomoea aquatica) in aquaponic system. Aquaculture, Aquarium, Conservation & Legislation International. Journal of the Bioflux Society. 8 (3): 421-430.
Foss, A.K. Imsland, B. Roth, E. Schram & S.O. Stefansson. 2009. Effects of chronic and periodic exposure to ammonia on growth and blood physiology in juvenile turbot (Scophthalmus maximus). Aquaculture. 296: 45-50. https://doi.org/10.1016/j.aquaculture.2009.07.013
Goddard, S. 1996. Feed management in intensive aquaculture. In Feed Management in Intensive Aquaculture. Springer US. https://doi.org/10.1007/978-1-4613-1173-7
Greaves, K.M & S. Tuene. 2001. Bentuk & konteks perilaku agresif pada budidaya halibut atlantik (Hippoglossus hippoglossus L.). Budidaya Perairan. 193: 139-147.
Hanif, I.M., I. Effendi, T. Budiardi & I. Diatin. 2021. Pengembangan recirculated aquaculture system (RAS) dengan aplikasi nanobubble untuk meningkatkan kinerja pertumbuhan benih ikan kerapu. Jurnal Akuakultur Indonesia. 20 (2): 181-190. https://doi.org/10.19027/jai.20.2.181-190
Hernández, C, C.E. Lizárraga-Velázquez, D. Contreras-Rojas, E.Y. Sánchez-Gutiérrez, E. Martínez-Montaño, L. Ibarra-Castro & E.S. Peña-Marín. 2021. Fish meal replacement by corn gluten in feeds for juvenile spotted rose snapper (Lutjanus guttatus): Effect on growth performance, feed efficiency, hematological parameters, protease activity, body composition, & nutrient digestibility. Aquaculture. 531 (September 2020): 735896. https://doi.org/10.1016/j.aquaculture.2020.735896
Howerton, R. 2001. Best management practices for Hawaiian aquaculture. Center for Tropical & Subtropical Aquaculture. 148: 5-9.
Ijaz, N., Z. Iqbal & J.A. Chaudhary. 2010. Effects of ammonia on growth of Ctenopharyngodon idella (Valenciennes) fingerlings. Punjab University Journal of Zoology. 25 (1-2): 59-66.
Kim, J.H & J.C. Kang. 2015. The lead accumulation and hematological findings in juvenile rock fish sebastes schlegelii exposed to the dietary lead (II) concentrations. Ecotoxicol Environ Saf. 115: 33-39. https://doi.org/10.1016/j.ecoenv.2015.02.009
Lakani, B.F., M. Sattari & B. Falahatkar. 2013. Effect of different oxygen levels on growth performance, stress response and oxygen consumption in two weight groups of great sturgeon Huso huso. Iranian Journal of Fisheries Sciences. 12: 533-549. https://dor.isc.ac/dor/20.1001.1.15622916.2013.12.3.4.1
Lemarie, G., A. Dosdat, D. Coves, G. Dutto, E. Gasset & J. Person-Le Ruyet. 2004. Effect of chronic ammonia exposure on growth of european seabass (Dicentrarchus labrax) juveniles. Aquaculture. 229 (1-4): 479-491. https://doi.org/10.1016/S0044-8486(03)00392-2
Li, H., Z. Cui, H. Cui, Y. Bai, Z. Yin & K. Qu. 2023. A review of influencing factors on a recirculating aquaculture system: Environmental conditions, feeding strategies, & disinfection methods. Journal of the World Aquaculture Society. 54: 566-602. https://doi.org/10.1111/jwas.12976
Li, J., K. Huang, L. Huang, Y. Hua, K. Yu & T. Liu. 2020. Effects of dissolved oxygen on the growth performance, haematological parameters, antioxidant responses & apoptosis of juvenile GIFT (Oreochromis niloticus). Aquaculture Research. 51 (8): 3079-3090. https://doi.org/10.1111/are.14684
Li, L., Y. Shen, W. Yang, X. Xu & J. Li. 2021. Effect of different stocking densities on fish growth performance: A meta-analysis. Aquaculture. 544 (April): 737152. https://doi.org/10.1016/j.aquaculture.2021.737152
Malone, R. 2013. Recirculating aquaculture tank production systems a review of current design practice. Southern Regional Aquaculture Center. (453): 1-12.
Mansour, A.T., W.M. Fayed, A.S. Alsaqufi, H.A. Aly, Y.A. Alkhamis & G.B. Sallam. 2022. Ameliorative effects of zeolite & yucca extract on water quality, growth performance, feed utilization, & hematobiochemical parameters of european seabass reared at high stocking densities. Aquaculture Reports. 26. https://ui.adsabs.harvard.edu/link_gateway/2022AqRep..2601321M/doi:10.1016/j.aqrep.2022.101321
Marui, T. 2013. An introduction to micro/nano-bubbles & their applications. Journal Systemics, Cybernetics Adn Informatics 11(4):68–73. https://doi.org/10.1007/978-1-349-04320-0
Monalisa, S.S & I. Minggawati. 2010. Water quality affects the growth of tilapia (Oreochromis sp.) in concrete & tarpaulins. Journal of Tropical Fisheries. 5 (2): 526-530.
Murray, F., J. Bostock & D. Fletcher. 2014. Review of recirculation aquaculture system technologies & their commercial application prepared for highlands & islands enterprise. 44 (March). 1-82.
Mwaura, J.G., C. Wekesa, K. Kelvin, A. Paul, P.A. Ogutu & P. Okoth. 2023. Pangenomics of the cichlid species (Oreochromis niloticus) reveals genetic admixture ancestry with potential for aquaculture improvement in kenya. The Journal of Basic & Applied Zoology. 84 (1). https://doi.org/10.1186/s41936-023-00346-6
Nguyen, H.Y.N., T.L. Trinh, K. Baruah, T. Lundh & A. Kiessling. 2021. Growth & feed utilisation of nile tilapia (Oreochromis niloticus) fed different protein levels in a clear-water or Biofloc-RAS system. Aquaculture. 536. https://doi.org/10.1016/j.aquaculture.2021.736404
Olusola, S.E & L.C. Nwanna. 2014. Research article open access growth performance of nile tilapia (Oreochromis niloticus) fed processed soybean meal-based diets supplemented with phytase. International Journal of Aquaculture. 4 (8): 48-54.
Pratama, M.A., I.W.Arthana & G.R.A. Kartika. 2021. Fluktuasi kualitas air budidaya ikan nila (Oreochromis niloticus) dengan beberapa variasi sistem resirkulasi. Current Trends in Aquatic Science. (1): 102-107.
Rahmawati, A.I., R.N. Saputra, A. Hidayatullah, A. Dwiarto, H. Junaedi, D. Cahyadi, H.K.H. Saputra, W.T. Prabowo, U.K.A. Kartamiharja, H. Shafira, A. Noviyanto & N.T. Rochman. 2021. Enhancement of Penaeus vannamei shrimp growth using nanobubble in indoor raceway pond. Aquaculture & Fisheries. 6 (3): 277-282. https://doi.org/10.1016/j.aaf.2020.03.005
Randall, D.J & T.K. Tsui. 2002. Ammonia toxicity in fish. Marine pollution bulletin. 45 (1-12): 17-23. https://doi.org/10.1016/s0025-326x(02)00227-8
Sá, M.V.C., 2012. Limnocultura: Limnologia para Aquicultura. UFC, Fortaleza (ISBN: 978-85-7282-523-8).
Santos, G.A., J. Schrama, R.E.P. Mamauag, J.H.W. Rombout & J.A.J. Verreth. 2010. Chronic stress impairs performance, energy metabolism & welfare indicators in european seabass (Dicentrarchus labrary). The Combined Effects of Fish Crowding & Water Quality Deterioration Aquaculture, 299, 73-80.
Serizawa E, Akimi, & Chiang M. 2017. Fundamentals & Applications of Micro/Nano Bubbles.
Sheng, Y., Z.Y. Hua, Z. Yang, X.L.L. Wei, Y.J. Sheng, L.H. Jia & Q. Jun. 2019. Effects of acute hypoxic stress on biochemical parameters, immune regulation & metabolic capacity of the blood in genetically improved farmed tilapia (GIFT., Oreochromis niloticus). Journal of Applied Ichthyology. 35 (4): 978-986. https://doi.org/10.1111/jai.13930
Shin, K.W., S.H. Kim, J.H. Kim, S.D. Hwang & J.C. Kang. 2016. Toxic effects of ammonia exposure on growth performance, hematological parameters, & plasma components in rockfish, Sebastes schlegelii, during thermal stress. Fisheries & Aquatic Sciences. 19 (1). https://doi.org/10.1186/s41240-016-0044-6
Shofura, H., S. Suminto & D. Chilmawati. 2017. The effect of addition "probio-7" on artificial feed on the efficiency utilization of feed, growth and survival rate of gift tilapia fingerlings (Oreochromis niloticus). Jurnal Sains Akuakultur Tropis. 11: 10-20.
Slembrouck, J., E. Baras, J. Subagja, L.T. Hung & M. Legendre. 2009. Survival, growth & food conversion of cultured larvae of Pangasianodon hypophthalmus, depending on feeding level, prey density & fish density. Aquaculture. 294 (1-2): 52-59. https://doi.org/10.1016/j.aquaculture.2009.04.038
Subhan, U., I. Iskandar, Z. Zahidah & I.M. Joni. 2021. Detection of reserve oxygen potential in the present of fine bubbles & its ammonia removal for aquaculture effluent. Materials Science Forum. 1044. MSF:103–11. https://doi.org/10.4028/www.scientific.net/MSF.1044.103
Subhan, U., I. Iskandar, Z. Zahidah, C. Panatarani & I.M. Joni. 2022. Effect of ultrafine bubbles on various stocking density of striped catfish larviculture in recirculating aquaculture system. Fishes. 7 (4). https://doi.org/10.3390/fishes7040190
Sulastri, S & I. Nurhayati, I. 2014. Pengaruh media filtrasi arang aktif terhadap kekeruhan, warna & TDS pada air telaga di Desa Balongpanggang. Jurnal Teknik Waktu. 12 (1): 43-47. https://doi.org/10.36456/waktu.v12i1.825
Tanjung, R.R.M., I. Zidni, Iskandar & J. Junianto. 2019. Effect of difference filter media on recirculating aquaculture system (RAS) on tilapia (Oreochromis niloticus) production performance. World Scientific News. 194-208.
Temesgen, T., T. Bui, M. Ham, K.T. Il & H. Park. 2017. Micro & nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid & Interface Science. 246: 40-51. https://doi.org/10.1016/j.cis.2017.06.011
Tibile, R.M., P.B. Sawant, N.K. Chja, W.S. Lakra, C. Prakash, S.S. Swain & K. Bhagawati. 2016. Effect of stocking density on growth, size variation, condition index & survival of discus, Symphysodon aequifasciatus Pellegrin, 1904. Turkish Journal of Fisheries & Aquatic Sciences. 16: 455-462. https://doi.org/0.4194/1303-2712-v16_2_25
Timmons, M.B., J.M. Ebeling, F.W. Wheaton, S.T. Summerfelt & B.J. Vinci. 2002. Recirculating Aquaculture Systems, 2nd Edition. Cayuga Aqua Ventures, New York. 769 pgs.
Tsuge, H. 2015. Micro- & Nanobubbles. CRC Press Taylor & Francis Group.
Wang, H & H. Zhang. 2017. Research on the nitrogen removal efficiency & mechanism of deep subsurface wastewater infiltration systems by fine bubble aeration. Ecological Engineering. 107: 33-40. https://doi.org/10.1016/j.ecoleng.2017.07.005
Warwick, E.J., J.M. Astuti & W. Hardjosubroto. 1995. Pemuliaan ternak. Gadjah Mada University Press. Yogyakarta. 485.
How to Cite this Article:
Subhan, U., I. Meisani, A.R. Afriza, I. Nurruhwati, R. Grandiosa & M.A.A. Al Mujahid. 2025. Optimizing red tilapia juvenile (Oreochromis niloticus) nursery in recirculating aquaculture with ultrafine bubbles system at variance stocking densities. Jurnal Perikanan Universitas Gadjah Mada. 27 (2): xx-xx. https://doi.org/10.22146/jfs.107148
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Perikanan Universitas Gadjah Mada

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats



