Comparing Vessel Monitoring System and Logbook Data for Skipjack Tuna Habitat Modeling in Eastern Indian Ocean
Ridwan Nurzeha(1*), Jonson Lumban Gaol(2), Syamsul Bahri Agus(3), Al Fajar Alam(4)
(1) Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, West Java, Indonesia
(2) Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, West Java, Indonesia
(3) Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, West Java, Indonesia
(4) Ministry of Marine Affairs and Fisheries, Republic of Indonesia, Jakarta, Indonesia
(*) Corresponding Author
Abstract
Skipjack tuna (Katsuwonus pelamis) is important to Indonesian fisheries, which lead to the need of accurate habitat prediction for sustainable management. This study assesses the spatiotemporal coverage and predictive utility of logbook and Vessel Monitoring System (VMS) data for skipjack habitat modeling using MaxEnt, with sea surface temperature (SST), chlorophyll-a, sea surface height (SSH), and salinity as predictors. Findings indicate VMS offers broader positional coverage but suffers from behavioral ambiguity, whereas logbook data, though spatially limited, provides higher accuracy due to direct catch reporting. Model evaluations showed comparable performance: the VMS-derived model achieved an AUC of 0.760 and an F1-score of 0.658, while the logbook-derived model yielded an AUC of 0.742 and an F1-score of 0.624. However, distribution analysis revealed the logbook-derived model performed better, with 87.5% of fishing events occurring in higher Habitat Suitability Index (HSI) areas compared to 73.1% for the VMS-derived model. These results suggest VMS data presents a viable alternative and comparative data source to logbook records for habitat modeling, offering opportunities to enhance fisheries management.
Keywords
Full Text:
PDFReferences
Allouche, O., A. Tsoar & R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology. 43: 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Barbiero, P., G. Squillero & A.P. Tonda. 2020. Modeling generalization in machine learning: A methodological and computational study. https://doi.org/10.48550/arXiv.2006.15680
Dunn, D.C., S.M. Maxwell, A.M. Boustany & P.N. Halpin. 2016. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proceedings of the National Academy of Sciences 113: 668-673. https://doi.org/10.1073/pnas.1513626113
Elith, J., S.J. Phillips, T. Hastie, M. Dudík, Y.E. Chee & C.J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 17: 43-57. https://doi.org/https://doi.org/10.1111/j.1472-4642.2010.00725.x
Fahmi, Z., Y. Hikmayani, T. Yunanda, P. Yudiarso, W. Wudianto & B. Setyadji. 2020. Indonesia National Report to The Scientific Commitee of The Indian Ocean Tuna Commission 2020. Kementerian Kelautan dan Perikanan. Jakarta.
Faturachman, D., Z. Fitri, S. Aslan & K.A. Sulaeman. 2021. Comparison between fish-catching techniques with purse seine fishing equipment in Japan and Indonesia. IOP Conf Ser Mater Sci Eng 1052. 12071. https://doi.org/10.1088/1757-899X/1052/1/012071
Floch, L., F. Marsac, T. Fily, M. Depetris, A. Duparc, D. Kaplan & J. Lebranchu. 2021. Statistics of the french purse seine fishing fleet targeting tropical tuna in the Indian Ocean (1981-2020).17ème Groupe de Travail Sur La Collecte de Données et Les Statistiques. https://iotc.org/WPDCS/17/21
Gunawardane, N.D.P., M.M. Ariyarathna, U.S. Amarasinghe & M.D.S.T. De Croos. 2023. Validating the fishing locations reported in the logbooks using the positional data of vessel monitoring systems in the multi-day fishery of Sri Lanka. Sri Lanka Journal of Aquatic Sciences. 28. 11. https://doi.org/10.4038/sljas.v28i1.7604
Hidayat, R., M. Zainuddin, A. Mallawa, M. Mustapha, S. Safruddin & A. Putri. 2020. Estimating potential fishing zones for Skipjack Tuna (Katsuwonus pelamis, in: Abundance in Southern Makassar Strait. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/564/1/012082
Panzeri, D., T. Russo, E. Arneri, R. Carlucci, G. Cossarini, I. Isajlović, S. Krstulović Šifner, C. Manfredi, F. Masnadi, M. Reale, G. Scarcella, C. Solidoro, M.T. Spedicato, N. Vrgoč, W. Zupa & S. Libralato. 2024. Identifying priority areas for spatial management of mixed fisheries using ensemble of multi-species distribution models. Fish and Fisheries. 25: 187-204. https://doi.org/10.1111/faf.12802
Russo, T., L. D’Andrea, A. Parisi & S. Cataudella. 2014. VMSbase: An R-package for VMS and logbook data management and analysis in fisheries ecology. PLoS One. 9: e100195. https://doi.org/10.1371/journal.pone.0100195
Samarão, J., M. Gaspar, A. Moreno & M. Rufino. 2024. Improving machine learning predictions when estimating fishing effort using high-3 resolution spatio-temporal. SSRN. https://dx.doi.org/10.2139/ssrn.4716215
Samedi, B., H. Hardoko, C.S.U. Dewi, N.D.S. Syam’s, N.F. Diza & G.D.A.P. Bayuaji. 2023. Seasonal migration zone of skipjack tuna (Katsuwonus pelamis) in the South Java Sea using multisensor satellite remote sensing. Journal of Marine Sciences 2023. 1073633. https://doi.org/https://doi.org/10.1155/2023/1073633
Scales, K.L., E.L. Hazen, M.G. Jacox, C.A. Edwards, A.M. Boustany, M.J. Oliver & S.J. Bograd. 2017. Scale of inference: on the sensitivity of habitat models for wide-ranging marine predators to the resolution of environmental data. Ecography. 40: 210-220. https://doi.org/https://doi.org/10.1111/ecog.02272
Shabani, F., L. Kumar & M. Ahmadi. 2018. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Global Journal of Human-Social Science: B Geography, Geo-Sciences, Environmental Science & Disaster Management. 18 (1). https://globaljournals.org/GJHSS_Volume18/2-Assessing-Accuracy-Methods.pdf
Sharifian, S., M.S. Mortazavi & S.L.M. Nozar. 2023. Predicting present spatial distribution and habitat preferences of commercial fishes using a maximum entropy approach. Environmental Science and Pollution Research. 30: 75300-75313. https://doi.org/10.1007/s11356-023-27467-3
Stephens, A & A. MacCall. 2004. A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fish Res 70. 299–310. https://doi.org/https://doi.org/10.1016/j.fishres.2004.08.009
Syah, A., A. Ni’am & D. Jatisworo. 2022. Potential fishing grounds of Skipjack tuna (Katsuwonus pelamis) in western water of Sumatera using remotely sensed data and maximum entropy model. IOP Conference Series. Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1251/1/012066
Thoya, P., J. Maina, C. Möllmann & K.S. Schiele. 2021. AIS and VMS ensemble can address data gaps on fisheries for marine spatial planning. Sustainability. 13. https://doi.org/10.3390/su13073769
Vayghan, A & M.-A. Lee. 2022. Hotspot habitat modeling of skipjack tuna (Katsuwonus pelamis) in the Indian Ocean by using multisatellite remote sensing. Turk J Fish Aquat Sci. 22. https://doi.org/10.4194/TRJFAS19107
Wang, J., X. Chen & Y. Chen. 2016. Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean. Int J Remote Sens. 37. 6149-6164. https://doi.org/10.1080/01431161.2016.1256509
Wang, L., 2024. Can species distribution models inform us about future ecosystems? Scientia. https://doi.org/10.33548/scientia1038
Zainuddin, M., S. Safruddin, A. Farhum, B. Budimawan, R. Hidayat, M. Selamat & Y. Ihsan. 2023. Satellite-based ocean color and thermal signatures defining habitat hotspots and the movement pattern for commercial skipjack tuna in Indonesia Fisheries Management Area 713, Western Tropical Pacific. Remote Sens (Basel). 1268. https://doi.org/10.3390/rs15051268
How to Cite this Article:
Nurzeha, R., J.L. Gaol, S.B. Agus & A.F. Alam. 2025. Comparing vessel monitoring system and logbook data for skipjack tuna habitat modeling in Eastern Indian Ocean. Jurnal Perikanan Universitas Gadjah Mada. 27 (2): xx-xx. https://doi.org/10.22146/jfs.107568
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Perikanan Universitas Gadjah Mada

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats




