Induction of Allotriploidy in Pangasius and Its Effects on Growth Performance Through Tetraploid × Diploid Hybridization
Debby Urabi(1), Kurnia Anggraini Rahmi(2*), Odang Carman(3), Agus Oman Sudrajat(4), Harton Arfah(5)
(1) Marine & Fisheries Agribusiness, Sambas State Polytechnic, Sambas, West Kalimantan, Indonesia
(2) Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, Indonesia
(3) Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, Indonesia
(4) Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, Indonesia
(5) Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, Indonesia
(*) Corresponding Author
Abstract
Triploidization is a polyploidization technique used to produce fish with improved growth, while hybridization is another method to enhance genetic quality through crosses within or between species. This study evaluated the growth performance of allotriploid catfish at the seed stage. The experiment was conducted for 45 days at the Laboratory of Reproduction and Genetics of Aquatic Organisms, Bogor Agricultural University, using a completely randomized design with four treatments and three replications. The treatments consisted of allotriploid, autotriploid, hybrid diploid, and diploid fish. Ploidy analysis showed that allotriploid and autotriploid fish had up to three nucleoli per cell, while hybrid diploid and diploid fish had a maximum of two. Growth results indicated that allotriploid fish achieved the highest final weight (4.68±0.12 g) and length (2.79 ± 0.16 inches), followed by hybrid diploid, autotriploid, and diploid fish. ANOVA results confirmed significant differences in final weight and length among treatments, indicating that ploidy manipulation and hybridization had a substantial impact on growth. However, feed conversion ratio and survival rate did not differ significantly (P > 0.05). Overall, the findings indicate that allotriploid catfish seeds showed superior growth performance compared to autotriploid, hybrid diploid, and diploid fish.
Keywords
Full Text:
PDFReferences
Berrill, I.K., C.M. MacIntyre, C. Noble, M. Kankainen & J.F. Turnbull. 2012. Bioeconomic costs and benefit of using triploid rainbow trout in aquaculture: Reduced mortality. Aquacult Eco Mgmnt. 164: 365-383. https://doi.org/10.1080/13657305.2012.729245
Blanc, J.M., P. Maunas & F. Valle. 2005. Effect of triploidy on paternal and maternal variance components in brown trout, Salmo trutta L. Aquac Res. http://dx.doi.org/10.1111/j.1365-2109.2005.01313.x
Blasio, F., P. Prieto, M. Pradillo & T. Naranjo. 2022. Genomic and meiotic changes accompanying polyploidization. Plants. 11 (1): 125. https://doi.org/10.3390/plants11010125
Burke, H.A., C.F.D. Sacobie, S.P. Lall & T.J. Benfey. 2010. The effect of triploidy on juvenile Atlantic salmon Salmo salar response to varying levels of dietary phosphorus. Aquaculture 306 (1-4): 295-301. https://doi.org/10.1016/j.aquaculture.2010.05.002
Carman, O. 2024. Poliploidisasi pada ikan sebagai alternatif strategi pemuliaan yang praktis dan ramah lingkungan. Institut Pertanian Bogor. Bogor.
Darmawan, J & E. Tahapari. 2017. Performa pertumbuhan, koefisien variasi dan heterosis hasil persilangan ikan patin Pangasius sp. pada tahap pendederan II. Jurnal riset akuakultur 12 1: 21-28. http://dx.doi.org/10.15578/jra.12.1.2017.21-28
Darmawan, J & E. Tahapari. 2019. Uji pendahuluan tingkat ketahanan ikan patin Pasupati Pangasius sp. Triploid pada pengujian transportasi statis. Semnaskan-UGM XVI.
Daryanto, M.S., O. Carman, D.T. Soelistyowati & R. Rahman. 2019. Penentuan tingkat ploidi pada poliploid patin siam Pangasianodon hypophthalmus (Sauvage, 1878) hasil manipulasi genetik berdasarkan jumlah nukleolus per sel. Jurnal Iktiologi Indonesia 19 1: 43-52.
Effendi, M.I. 2002. Biologi Perikanan. Yayasan Dewi Sri. Bogor.
Effendie, M.I. 1979. Fisheries Biology. Nusantara Library Foundation 112. Bogor.
Febriana, C.D., Y. Sistina & I. Sulistyo. 2019. The effectiveness of shark minnow (Osteochilus hasselti, Valenciennes 1842) fish by 40°C cold shock. Jurnal Akuakultura. 32: 40-48.
Feindel, N.J., T.J. Benfey & E.A. Trippel. 2010. Competitive spawning success and fertility of triploid male Atlantic cod Gadus morhua. Aquacult Environ Interactions. 1: 47-55. https://doi.org/10.3354/aei00006
Fraser, T.W.K., T.J. Hansen, F. Sambraus & P.G. Fjelldal. 2020. Vertebral deformities in interspesific diploid and triploid salmonid hybrids. Journal Fish Biology. 98 (4): 1059-1070. https://doi.org/10.1111/jfb.14353
Gjedrem, T. 1993. International selective breeding programs; constraints and future prospect. In: selective breeding of fishes in Asia and the United States. K.L. Main and E. Reynolds Eds. Proceeding of A workshop in Honolulu. Hawai. 18-32.
Glover, K.A., A.C. Harvey, T.J. Hansen, P.G. Fjelldal, F.N. Besnier, J.B. Bos, F. Ayllon, J.B. Taggart & M.F. Solberg. 2020. Chromosome aberrations in pressure induced triploid Atlantic salmon. BMC Genetics. 21:59. https://doi.org/10.1186/s12863-020-00864-0
Goo, I.B., J.H. Im, H.W. Gil, S.G. Lim & I.S. Park. 2015. Comparison of cell and nuclear size difference between diploid and induced triploid in marine medaka (Oryzias dancena). Dev. Reprod. 19 (3): 127-134. https://doi.org/10.12717/DR.2015.19.3.127
Gu, H.R., Y.F. Wan, Y. Yang, Q. Ao, W.L. Cheng, S.H. Deng, D.Y. Pu, X.F. He, L. Jin & Z.J. Wang. 2019. Genetic and morphology analysis among the pentaploid F1 hybrid fishes (Schizothorax wangchiachii ♀ x Percocypris pingi ♂) and their parents. Animal. 13 (12): 1-10. https://doi.org/10.1017/S1751731119001289
Gustiano, R & A.H. Kristanto. 2007. Evaluation of hybridization between Pangasius djambal (Bleeker 1846) and Pangasianodon hypophthalmus (Sauvage 1878): Biometric characterization and growth analysis. Indonesian aquaculture journal. 2 1: 27-33. http://dx.doi.org/10.15578/iaj.2.1.2007.27-33
Handayani, I., E. Nofyan & M. Wijayanti. 2014. Optimasi tingkat pemberian pakan buatan terhadap pertumbuhan dan kelangsungan hidup ikan patin jambal (Pangasius djambal). Jurnal akuakultur rawa Indonesia. 2 (2): 175-187. https://doi.org/10.36706/JARI.V2I2.2102
Hartami, P., O. Carman, A. Alimuddin, M.Z. Junior, R. Rahman & D. Hermawan. 2021. Performance analysis of tetraploid striped catfish Pangasianodon hypophthalmus resulting from heat shock induction. Aquatic Sciences Journal. 81: 43-48. https://doi.org/10.29103/aa.v8i1.3828
Hartono, D.P., P. Witoko & N. Purbosari. 2016. The effect of heat shock on the tetraploidy of catfish, Pangasius hypophthalmus. Bioflux. 93: 597-603. https://bioflux.com.ro/docs/2016.597-603.pdf
Harvey, A.C., P.G. Fjelldal, M.F. Solberg, T. Hansen & K.A. Glover. 2017. Ploidy elicits a whole-genome dosage effect: Growth of triploid Atlantic salmon is linked to the genetic origin of the second maternal chromosome set. BMC Genetics. 18 (1). https://doi.org/10.1186/s12863-017-0502-x
Howell, W.M & D.A. Black. 1980. Controlled silver staining of nucleolus organizer region with protective colloidal developer: A 1 - step methods. Experientia. 36 (8): 1014-1015. https://doi.org/10.1007/bf01953855
Hu, F., J. Fan, Q. Qin, Y. Huo, Y. Wang, C. Qu, Q. Liu, W. Li, X. Chen, L. Cao, M. Tao, S. Wang, Z. Rurong, K. Luo & S. Liu. 2019. The sterility of allotriploid fish and fertility of female autotriploid fish. Frontiers in Genetic. 10: 377.
Hu, F., C. Wu, Y. Zhou, L. Cao, J. Xiao, S. Wang, Y. Wu, L. Ren, Q. Liu, W. Li, M. Wen, M. Tao, Q. Qin, R. Zhao, K. Luo & S. Liu. 2020. Production of androgenetic, triploid and tetraploid hybrid from the interspesific hybridization of female Japanese crucian carp and male blunt snout bream. Aquaculture. 491: 50-58. https://doi.org/10.1016/j.aquaculture.2018.03.014
Ibrahim, Y., D.T. Soelistyowati & O. Carman. 2017. Triploid striped catfish Pangasianodon hypophthalmus: Growth performance and gonadal development. JAI. 161:76-82. https://doi.org/10.19027/jai.16.1.76-82
Jankun, M., H. Kuzminski & G.F. Selezniow. 2007. Cytologic ploidy determination in fish – An example of two salmonid species. Environ Biotechnol. 3 (2): 52-56. https://doi.org/10.1.1.1003.6544
Jenkins, J.A., R.O. Draugelis-Dale, R.P. Glennon, A.M. Kelly, B.L. Brown & J.R. Morrison. 2017. An accurate method for measuring triploidy of larvae fish spawns. North American Journal of Aquaculture. 79 (3): 224-237. https://doi.org/10.1080/15222055.2017.1296517
Kadi, A. 2007. Manipulasi poliploidi untuk memperoleh jenis baru yang unggul. Oseana. 1 (4): 1-11.
Lawson, E.O & H.A. Ishola. 2010. Effect of cold shock treatment on the survival of fertilized eggs and growth performance of the larvae of African mud catfish Clarias gariepinus. Research Journal of Fisheries and Hydrobiology. 5 (2): 85- 91.
Lefevre, F., C. Mireille, J. Bugeon, L. Laurent, F. Medale & E. Quillet. 2015. Selection for muscle fat content and triploidy affect flesh quality in pan-size rainbow trout Oncorhynchus mykiss. Aquaculture. 448: 569-577. https://doi.org/10.1016/j.aquaculture.2015.06.029
Li, W., H. Tan, J. Liu, J. Hu, J. Cui, S. Wang, Q. Liu, F. Hu, L. Ren, M. Tao, R. Zhao, C. Yang, Q. Qin & S. Liu. 2018. Comparative analysis of testis transcriptomes associated with male infertility in triploid cyprinid fish. Reproduction, Fertility and Development. 31 (2): 248-260. https://doi.org/10.1071/rd18034
Liu, Q., K. Luo, X. Zhang, F. Liu, Q. Qin, M. Tao, M. Wen, C. Tang & S. Liu. 2021. A new type triploid fish derived from the diploid hybrid crucian carp ♀ x autotetraploid fish ♂. Reproduction and Breeding. 1 (2): 122-127. https://doi.org/10.1016/j.repbre.2021.07.003
Mable, B.K. 2004. Why polyploidy is rarer in animals than in plants: Myths and mechanisms.. Biologial Journal of the Linnean Society. 82 (4): 453-466. https://doi.org/10.1111/j.1095-8312.2004.00332.x
Mukti, A.T., O. Carman, A. Alimuddin, M.Z. Junior & M.A. Suprayudi. 2020. Growth performance, survival rate, flesh, and proximate composition of sex-grouped triploid and diploid Nile tilapia (Oreochromis niloticus). Turkish journal of veterinary and animal sciences. 44 (2): 290-298. https://doi.org/10.3906/vet-1905-79
Nam, Y.K., G.C. Choi & D.S. Kim. 2004. An efficient method for blocking the 1st mitotic cleavage of fish zygote using combined thermal treatment, exemplified by mud loach (Misgurnus mizolepis). Theriogenology. 61 (5): 933-945. https://doi.org/10.1016/S0093-691X(03)00258-9
Nascimento, N.F.D., M.P. Santos, N.L. Pereira, P.S. Monzani, D. Niedzielski, T. Fujitomo, J.A. Senhorini, L.S.O. Nakaghi & G.S. Yasui. 2020. Corrigendum to “The first case of induced gynogenesis in Neotropical fishes using the yellowtail tetra (Astyanax altiparanae) as a model organism”. Aquaculture. 520. https://doi.org/10.1016/j.aquaculture.2020.735200
Nascimento, N.F.D., D.H.D.S. Silva, M.P. Santos, T. Fujitomo, J.A. Senhorini, L.S.O. Nakaghi & G.S. Yasui. 2017. Stereological analysis of gonads from diploid and triploid fish yellowtail tetra Astyanax altiparanae (Garutti & Britski) in laboratory conditions. Zygote. 25 (4): 537-544. https://doi.org/10.1017/s0967199417000399
Nathanailides, C., D. Klaoudatos, C. Perdikaris, S. Klaoudatos, M. Kolygas & F. Athanassopoulou. 2019. Metabolic differentiation of diploid and triploid European sea bass juveniles. Int. Aquat. Res.11: 199-206. https://doi.org/10.1007/s40071-019-0229-6
Okomoda, V.T., J.P. Pradeep, A.S. Oladimeji, A.B. Abol-Munafi, K.I. Alabi, M. Ikhwanuddin, C. Martins, J.A. Umaru & A. Hassan. 2020. Effect of electric induced triploidization on sex ratio, growth and gonad histology of red hybrid tilapia. Aquaculture. 520: 1-6. https://doi.org/10.1016/j.aquaculture.2020.734991
Park, I.S. 2020. Comparative analysis of sectioned-body morphometric characteristics of diploid and triploid marine medaka, Oryzias dancena. Korean J. Environ. Biol. 381: 137-145. https://doi.org/10.11626/KJEB.2020.38.1.137
Park, I.S., H.W. Gil & D.S. Kim. 2018. Morphometric characteristic of diploid and triploid marine medaka, Oryzias dancena. Dev. Reprod. 22 (2) :183-192. https://doi.org/10.12717/DR.2018.22.2.183
Pechsiri, J & A. Yakupitiyage. 2005. A comparative study of growth and feed utilization efficiency of sex-reversed diploid and triploid nile tilapia Oreochromis niloticus L. Aqua Res. 36 (1): 45-51. https://doi.org/10.1111/j.1365-2109.2004.01182.x
Peruzzi, S., G. Rudolfsen, R. Primicerio, M. Frantzen & G. Kauric. 2009. Milt characteristics of diploid and triploid Atlantic cod (Gadus morhua L.). Aquacult. Rest. 40 (10): 1160-1169. https://doi.org/10.1111/j.1365-2109.2009.02212.x
Piferrer, F., A. Beaumont, J.C. Falguiere, M. Flajshans, P. Haffray & L. Colombo. 2009. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 293 (3-4): 125-156. https://doi.org/10.1016/j.aquaculture.2009.04.036
Piva, L.H., D.H.D. Siqueira-silva, C.A.G. Goes, T. Fujimoto, T. Saito, L.V. Dragone, J.A. Senhorini, F. Porto-foresti, J.B.S. Ferraz & G.S. Yasui. 2018. Triploid or hybrid tetra: Which is the ideal sterile host for surrogate technology?. Theriogenology. 1 (108): 239-244. https://doi.org/10.1016/j.theriogenology.2017.12.013
Poernomo, N., N.B.P. Utomo & Z.I. Azwar. 2015. Pertumbuhan dan kualitas daging ikan patin siam yang diberi kadar protein pakan berbeda. Jurnal Akuakultur Indonesia. 14 (2): 104-111.
Pradeep, P.J., T.C. Srijaya, A. Papini & A.K. Chatterji. 2012. Effect of triploidy induction on growth and masculinization of red tilapia [Oreochromis mossambicus (Peters, 1952) x Oreochromis niloticus (Linnaeus, 1758)]. Aquaculture. 344-349: 181-187. https://doi.org/10.1016/j.aquaculture.2012.03.006
Qin, Y., X. Li, Z. Noor, J. Li, Z. Zhou, H. Ma, S. Xiao, R. Mo, Y. Zhang & Z. Yu. 2020. A comparative analysis of the growth, survival and reproduction of Crassostrea hongkongensis, Crassostrea ariakensis, and their diploid and triploid hybrids. Aquaculture. 520: 1-11. https://doi.org/10.1016/J.AQUACULTURE.2020.734946
Qin, Y., Y. Zhang, R. Mo, Y. Zhang, J. Li, Y. Zhou, H. Ma, S. Xiao & Z. Yu. 2019. Influence of ploidy and environment on grow-out traits of diploid and triploid Hongkong oysters Crassostrea hongkongensis in southern China. Aquaculture. 507: 108-118. https://doi.org/10.1016/j.aquaculture.2019.04.017
Sambraus, F., M. Remen, R.E. Olsen, T.J. Hansen, R. Waagbo, T. Torgersen, E.J. Lock, A. Imsland, T.W.K. Fraser & P.G. Fjelldal. 2018. Changes in water temperature and oxygen: The effect of triploidy on performance and metabolism in large farmed Atlantic salmon. Aquaculture environment interactions. 7 :157-172. https://doi.org/10.3354/aei
Syahril, A., O. Carman & D.T. Soelistyowati. 2020. Tetraploidisasi kejut suhu dingin pada ikan patin siam Pangasianodon hypophthalmus (Sauvage, 1878) dengan suhu dan umur zigot yang berbeda. Jurnal Ikhtiologi Indonesia. 201: 13-22. https://doi.org/10.32491/jii.v20i1.454
Takeuchi, Y., T. Yatabe, H. Yoshikawa, Y. Ino, N. Kabeya, R. Yazawa & G. Yoshizaki. 2016. Production of functionally sterile triploid Nibe croaker Nibea mitsukurii induced by cold-shock treatment with spesial emphasis on triploid aptitude as surrogate broodstock. Aquaculture. 494. https://doi.org/10.1016/j.aquaculture.2016.05.030
Wang, S., X. Xu, K. Luo, Q. Liu, L. Chen, Z. Wei, P. Zhou, F. Hu, Z. Liu, M. Tao & S. Liu. 2020. Two new types of triploid hybrids derived from Cyprinus carpio (♀) x Megalobrama amblycephala (♂). Aquaculture. 528: 45-56. https://doi.org/10.1016/j.aquaculture.2020.735448
Xiao, L., D. Wang, Y. Guo, Z. Tang, Q. Liu, S. Li, Y. Zhang & H. Lin. 2019. Comparative transcriptome analysis of diploid and triploid hybrid goupers (Epinephelus coioides ♀ x E. lanceolatus ♂) reveals the mechanism of abnormal gonadal development in triploid hybrids. Genomics. 111 (3): 251-259. https://doi.org/10.1016/j.ygeno.2018.11.010
Zhang, Y., Y. Zhang, Z. Wang, X. Yan & Z. Yu. 2014. Phenotypic trait analysis of diploid and triploid hybrids from female Crassostrea hongkongensis × male C. gigas. Aquaculture. 434: 307-314. https://doi.org/10.1016/j.aquaculture.2014.08.039
Zhou, L & J. Gui. 2017. Natural and artificial polyploids in aquaculture. Aquaculture and fisheries 2 (3): 103-111. https://doi.org/10.1016/j.aaf.2017.04.003
Zhu, Y., W. Xiong, P. Zhang, J. Zhang & Y. Luo. 2021. Comparison of metabolic scaling between triploid and diploid common carp. Journal of Comparative Physiology B. 191 (4): 711-719. https://doi.org/10.1007/s00360-021-01365-x
Article Metrics
Refbacks
Copyright (c) 2025 Jurnal Perikanan Universitas Gadjah Mada

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats



