The Combination of Aquatic Species in Integrated Multi-Trophic Aquaculture with Paddy in Brackish Water: An Investigation of Feed Utilization Performance

https://doi.org/10.22146/jfs.83347

Heriansah Heriansah(1*), Indra Cahyono(2), Hamsiah Hamsiah(3)

(1) Balik Diwa Institute of Maritime Technology and Business, Makassar, South Sulawesi, Indonesia
(2) Balik Diwa Institute of Maritime Technology and Business, Makassar, South Sulawesi, Indonesia
(3) Balik Diwa Institute of Maritime Technology and Business, Makassar, South Sulawesi, Indonesia
(*) Corresponding Author

Abstract


This study investigated the performance of artificial feed in the Integrated Multi Trophic Aquaculture (IMTA) system through a combination of milkfish, tiger shrimp, and clam involving paddy in brackish water. The three combination groups (C) and triplicate including milkfish and paddy (C-2), milkfish, tiger shrimp, and paddy (K-3), and milkfish, tiger prawns, clams, and paddy (C-4) were examinated for 80 days on a model sheeting pond designed to have a volume of 280 L and a density of 30 individuals. Meanwhile, 30 clumps of paddy were maintained through the floating method which is constructed from bamboo with an area of 1 m2. Feeding 3 times a day with 5% of biomass resulted a mean Feed Conversion Ratio (FCR) and Index Profit (IP) of 2.1 and 2.0 for C-2, 2.0 and 2.9 for C-3, and 1.9 and 3.1 for C-4, respectively. The results showed that the best trend pattern were the combination of C-3 species which were statistically found to have a significant effect (P<0.05) on FCR and IP performances. The findings of current study have practical significance for the expansion of co-culture of paddy and aquatic animals in brackish water which important by ecologically, biologically, and economically.


Keywords


Brackish water; feed conversion ratio; IMTA-Paddy; index profit; species combination

Full Text:

PDF


References

Aftabuddin, S., W.U. Roman, C.K. Hasan, H. Rahman, M. Abdul & M. Siddique. 2018. First incidence of loose-shell syndrome disease in the giant tiger shrimp Penaeus monodon from the brackish water ponds in Bangladesh. J. Appl. Anim. Res. 46 (1): 210-2017. https://doi.org/10.1080/09712119.2017.1285771

Altinok, I. & R.C. Ozturk. 2017. Adverse effects of mariculture activities and practices on marine environment. Oceanogr. Fish. Open access J. 4 (1): 555630. http://dx.doi.org/10.19080/OFOAJ.2017.04.555630

Aubin, J., A. Baruthio, R. Mungkung & J. Lazard. 2015. Environmental performance of brackish water polyculture system from a life cycle perspective: A Filipino case study. Aquaculture 435: 217-227. https://doi.org/10.1016/j.aquaculture.2014.09.019

Azad, A.S., A. Estim, S. Mustafa & M.V. Sumbing. 2017. Assessment of nutrients in seaweed tank from land based integrated multitrophic aquaculture module. J. Geosci. Environ. Prot. 5 (8): 137-147. https://doi.org/10.4236/gep.2017.58012

Bashir, M.A., J. Liu, Y. Geng, H. Wang, J. Pan, D. Zhang, A. Rehim, M. Aon & H. Liu. 2020. Co-culture of rice and aquatic animals: An integrated system to achieve production and environmental sustainability. J. Clean. Prod. 249: 119310. https://doi.org/10.1016/j.jclepro.2019.119310

Bharati, S., C. Antony, C. Rajagopalasamy, A. Uma, B. Ahilan & S. Aanand. 2019. Functional feed additives used in fish feeds. Int. J. Fish. Aquat. Stud. 7 (3): 44-52.

Biswas, G., R. Ananda, D. De, J.K. Sundaray, T.K. Ghoshal, S. Anand, S. Kumar, A. Panigrahi, A.R. Thirunavukkarasu & A.G. Ponniah. 2012. Evaluation of productions and economic returns from two brackishwater polyculture systems in tide-fed ponds. J. Appl. Ichthyol. 28 (1): 116-122. https://doi.org/10.1111/j.1439-0426.2011.01909.x

Biswas, G., P. Kumar, M. Kailasam, T.K. Ghoshal, A. Bera & K.K. Vijayan. 2019. Application of Integrated Multi Trophic Aquaculture (IMTA) concept in brackishwater ecosystem: the first exploratory trial in the Sundarban, India. J. Coast. Res. 86 (1): 49-55. https://doi.org/10.2112/SI86-007.1

Bosma, R.H & M.C.J. Verdegem. 2011. Sustainable aquaculture in ponds: Principles, practices and limits. Livest. Sci. 139 (1-2): 58-68. https://doi.org/10.1016/j.livsci.2011.03.017

Braga, A., V. Magalhães, T. Hanson, T.C. Morris & T.M. Samocha. 2016. The effects of feeding commercial feed formulated for semi-intensive systems on Litopenaeus vannamei production and its profitability in a hyper-intensive biofloc-dominated system. Aquac. Reports. 3: 172-177. https://doi.org/10.1016/j.aqrep.2016.03.002

Brewer, D & R.C. Willan. 2018. Glauconome virens (Bivalvla: Glauconomldae) siphons: an important food for whiting (Sillago analis) in southern Queensland D. Brewer and R.C. Willan. J. Moll. Stud. 51 (1): 350-352. https://doi.org/10.1093/oxfordjournals.mollus.a065928

Buck, B.H., M.F. Troell, G. Krause, D.L. Angel, B. Grote & T. Chopin. 2018. State of the art and challenges for offshore Integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci. 5: 165. https://doi.org/10.3389/fmars.2018.00165

Chang, B.V., C.S. Liao, Y.T. Chang, W.L. Chao, S.L. Yeh, D.L. Kuo & C.W. Yang. 2019. Investigation of a farm-scale multitrophic recirculating aquaculture system with the addition of Rhodovulum sulfidophilum for milkfish (Chanos chanos) coastal aquaculture. Sustain. 11 (7): 1-15. https://doi.org/10.3390/su11071880

Colmer, T.D., M.C.H. Cox & L.A.C.J. Voesenek. 2006. Root aeration in rice (Oryza sativa): Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170 (4): 767-778. https://doi.org/10.1111/j.1469-8137.2006.01725.x

Cranford, P.J., G.K. Reid & S.M.C. Robinson. 2013. Open water integrated multi-trophic aquaculture: Constraints on the effectiveness of mussels as an organic extractive component. Aquac. Environ. Interact. 4: 163-173. https://doi.org/10.3354/aei00081

Cubillo, A.M., J.G. Ferreira, S.M.C. Robinson, CM. Pearce, R.A. Corner & J. Johansen. 2016. Role of deposit feeders in integrated multi-trophic aquaculture - A model analysis. Aquaculture 453: 54-66. https://doi.org/10.1016/j.aquaculture.2015.11.031

de Verdal, H., H. Komen, E. Quillet, B. Chatain, F. Allal, J.A.H. Benzie & M. Vandeputte. 2018. Improving feed efficiency in fish using selective breeding: a review. Rev. Aquac. 10 (4): 833-851. https://doi.org/10.1111/raq.12202

Djumanto, D., U. Ustadi, R. Rustadi & B. Triyatmo. 2018. Utilization of wastewater from vannamei shrimp pond for rearing milkfish in Keburuhan Coast Purworejo Sub-District. Aquac. Indones. 19 (1): 38. http://dx.doi.org/10.21534/ai.v19i1.48

Eldani, A & J.H. Primavera. 1981. Effect of different stocking combinations on growth, production and survival of milkfish. Aquaculture 23 (1-4): 59-72. https://doi.org/10.1016/0044-8486(81)90007-7

FAO. 2018. The State of world Fisheries and Aquaculture 2018. Meeting the sustainable development goals., The Food and Agriculture Organization of the United Nations. https://doi.org/10.1111/ fog.12466

Foster-Martinez, M.R & E.A. Variano. 2016. Air-water gas exchange by waving vegetation stems. J. Geophys. Res. Biogeosciences. 121 (7): 1916-1923. https://doi.org/10.1002/2016JG003366

Fry, J.P., N.A. Mailloux, D.C. Love, M.C. Milli & L. Cao. 2018. Feed conversion efficiency in aquaculture: Do we measure it correctly? Environ. Res. Lett. 13 (2): 024017. https://ui.adsabs.harvard.edu/link_gateway/2018ERL....13b4017F/doi:10.1088/1748-9326/aaa273

Greenberg, A.E. 1984. Advances in Standard Methods for the Examination of Water and Wastewater. Proc. - AWWA Water Qual. Technol. Conf. 11-13.

Hastuti, Y.P., K. Nirmala & T. Setioaji. 2012. Nitrogen and phosphorus absorption capability in environmental culture by Taiwan gravestone Anadonta woodiana Lea. J. Akuakultur Indones. 11 (1): 86-95. https://doi.org/10.19027/jai.11.86-95

He, J., P. Feng, Lv. Chenfei, Lv. Min, Z. Ruan, H. Yang, H. Ma & R. Wang. 2020. Effect of a fish–rice co-culture system on the growth performance and muscle quality of tilapia (Oreochromis niloticus). Aquac. Reports 17: 100367. https://doi.org/10.1016/j.aqrep.2020.100367

Irianto, H., Mujiyo, E. W. Riptanti & A. Qonita. 2018. The land use potential of flood-prone rice fields using floating rice system in Bojonegoro regency in East Java. IOP Conf. Ser. Earth Environ. Sci. 142: 012072. https://ui.adsabs.harvard.edu/link_gateway/2018E&ES..142a2072I/doi:10.1088/1755-1315/142/1/012072

Jamil, A., M. Mejaya, R. Praptana, N. Subekti, M. Aqil, A. Musaddad & F. Putri. 2016. Deskripsi Varietas Unggul Tanaman Pangan 2010-2016, in: Http://Pangan.Litbang.Pertanian.Go.Id. p. 142.

Jimoh, W. A., A. A. Ayeloja, A. O. Rifhat, A. B. Adeleke & M. O. Shodamola. 2013. Incidence of cost analysis of producing African catfish, Claris gariepinus (Burchell 1822) using diets containing water melon seemeal (Citrullus lanatus). Proceeding 47th Annu. Conf. Agric. Soc. Niger. held Fed. Coll. Anim. Heal. Prod. Technol. Moor Plant. Ibadan between 4th 8th November, 2013. 1242–1247.

Kang, Q., R. Li, Q. Du, B. Cheng, Z. Liao, C. Sun & Z. Li. 2016. Studies on the ecological adaptability of growing rice with floating bed on the dilute biogas slurry. Biomed Res. Int. 2016. https://doi.org/10.1155/2016/3856386

Kent, M., C.L. Browdy & J.W. Leffler. 2011. Consumption and digestion of suspended microbes by juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture. 319 (3-4): 363-368. https://doi.org/10.1016/j.aquaculture.2011.06.048

Knowler, D., T. Chopin, R. Martínez-Espiñeira, A. Neori, A. Nobre, A. Noce & G. Reid. 2020. The economics of Integrated Multi-Trophic Aquaculture: where are we now and where do we need to go? Rev. Aquac. 12 (3): 1579-1594. https://doi.org/10.1111/raq.12399

Kunda, M., S.K. Das & S.K. Mazumder. 2014. Impacts of Integrated Rice-prawn-fish Culture Technologies on the Livelihood of Rural Farmers. J. Adv. Sci. Res. 5: 34-38.

Lalramchhani, C., C.P. Balasubramanian, A. Panigrahi, T.K. Ghoshal, S. Das, P.S.S., Anand & K K.Vijayan. 2019. Polyculture of Indian white shrimp (Penaeus indicus) with milkfish (Chanos chanos) and its effect on growth performances, water quality and microbial load in brackishwater pond. J. Coast. Res. 86 (1): 43-48. https://doi.org/10.2112/SI86-006.1

Lalramchhani, C., B.C. Paran, P.S.S. Anand, T.K. Ghoshal, P. Kumar & K.K. Vijayan. 2020. Integrated rearing system approach in the farming of mud crab, shrimp, fish, oyster and periphyton in bracksihwater pond. Aquac. Res. 51 (10): 4165-4172. https://doi.org/10.1111/are.14758

Lawson, T.B. 1995. Fundamentals of Aquacultural Engineering. Chapman and Hall Publishers, New York. https://doi.org/10.1007/978-1-4613-0479-1

Li, F., J. Feng, X. Zhou, C. Xu, M.H. Jijakli, W. Zhang & F. Fang. 2019. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds. Sci. Total Environ. 655: 284-291. https://doi.org/10.1016/j.scitotenv.2018.10.440

Martínez-Porchas, M., L.R. Martínez-Córdova, M.A. Porchas-Cornejo & J.A. López-Elías. 2010. Shrimp polyculture: A potentially profitable, sustainable, but uncommon aquacultural practice. Rev. Aquac. 2 (2): 73-85. https://doi.org/10.1111/j.1753-5131.2010.01023.x

Milstein, A. 1992. Ecological aspects of fish species interactions in polyculture ponds. Hydrobiologia 231: 177-186. https://doi.org/10.1007/BF00018201

Mondal, A., S. Bhattacharya, A. Mitra, J.K. Sundaray & R.K. Mohanty. 2020. Performance evaluation of mud crab Scylla olivacea (Herbst, 1896) co-culture with different fish species in confined brackishwater ponds. Aquaculture. 522: 735125. https://doi.org/10.1016/j.aquaculture.2020.735125

Nurhayati, A., W. Lili, T. Herawati & I. Riyantini. 2016. Derivatif analysis of economic and social aspect of added value minapadi (paddy-fish integrative farming) a case study in the Village of Sagaracipta Ciparay Sub District, Bandung West Java Province, Indonesia. Aquat. Procedia. 7: 12–18. https://doi.org/10.1016/j.aqpro.2016.07.002

Obirikorang, K.A., S. Amisah & P.V. Skov. 2016. Growth performance, feed utilization and sensory characteristics of nile tilapia, Oreochromis niloticus fed diets with high inclusion levels of copra meal. J. Anim. Res. Nutr. 1 :18. http://dx.doi.org/10.21767/2572-5459.100018

Pantjara, B., M.N. Syafaat & A.H. Kristanto. 2015. Effect of dynamical water quality on shrimp culture in the Integrated Multitropic Aquaculture (IMTA). Indones. Aquac. J. 10 (1): 81. http://dx.doi.org/10.15578/iaj.10.1.2015.81-90

Rahi, M.L., K.N. Azad, M. Tabassum, H.H. Irin, K.S. Hossain, D. Aziz, A. Moshtaghi & D.A. Hurwood. 2021. Effects of salinity on physiological, biochemical and gene expression parameters of black tiger shrimp (Penaeus monodon): Potential for farming in low-salinity environments. Biology (Basel). 10 (12): 1220. https://doi.org/10.3390/biology10121220

Sahabuddin, S., A. Sahrijanna & H.S. Suwoyo. 2019. Increased Oscillatoria sp. population on integrated cultivation ponds of rice and tiger shrimp (Penaeus monodon) in idle land. Int. J. Environ. Agric. Biotechnol. 4 (6): 1814-1819. https://dx.doi.org/10.22161/ijeab.46.31

Sarà, G., A. Zenone & A. Tomasello. 2009. Growth of Mytilus galloprovincialis (Mollusca, bivalvia) close to fish farms: A case of integrated multi-trophic aquaculture within the Tyrrhenian sea. Hydrobiologia. 636 (1): 129-136. https://doi.org/10.1007/s10750-009-9942-2

Srisunont, C & S. Babel. 2016. Estimating the carrying capacity of green mussel cultivation by using net nutrient removal model. Mar. Pollut. Bull. 112 (1-2): 235-243. https://doi.org/10.1016/j.marpolbul.2016.08.012

Srivastava, A., S.J. Chun, S.R. Ko, J. Kim, C.Y. Ahn & H.M. Oh. 2017. Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake. J. Environ. Manage. 203 (1): 342-348. https://doi.org/10.1016/j.jenvman.2017.08.006

Supono, 2017. Teknologi Produksi Udang. Penerbit Plantaxia.

Suwignyo, S. 2005. Avertebrata Air, 2nd ed. Penebar Swadaya, Jakarta.

Tsutsui, I., J. Songphatkaew, C. Meeanan, D. Aue-Umneoy, H. Sukchai, P. Pinphoo, S. Klomkling, M. Ganmanee, H. Sudo & K. Hamano. 2015. Co-culture with Chaetomorpha sp. enhanced growth performance and reduced feed conversion ratio of the giant tiger prawn, Penaeus monodon. Int. Aquat. Res. 7: 193-199. https://doi.org/10.1007/s40071-015-0103-0

Verween, A., M. Vincx & S. Degraer. 2007. The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca, Bivalvia): The search for environmental limits. J. Exp. Mar. Bio. Ecol. 348 (1-2): 111-120. https://doi.org/10.1016/j.jembe.2007.04.011

Viau, V.E., D.M. De Souza, E.M., Rodríguez, W. Wasielesky, P.C. Abreu & E.L.C. Ballester. 2013. Biofilm feeding by postlarvae of the pink shrimp Farfantepenaeus brasiliensis (Decapoda, Penaidae). Aquac. Res. 44 (5): 783-794. https://doi.org/10.1111/j.1365-2109.2011.03087.x

Wahab, M.A., A. Kadir, A. Milstein & M. Kunda. 2011. Manipulation of species combination for enhancing fish production in polyculture systems involving major carps and small indigenous fish species. Aquaculture. 321 (3-4): 289-297. https://doi.org/10.1016/j.aquaculture.2011.09.020

Yap, W.G., A. C. Villaluz, M. G. G., Soriano & M. N. Santos. 2007. Milkfish Production and processing technologies in the Philippines. Milkfish Proj. Publ. Ser. 22: 96.

Zhang, J., S. Zhang, D. Kitazawa, J. Zhou, S. Park, S. Gao & Y. Shen. 2019. Bio-mitigation based on integrated multi-trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. Lat. Am. J. Aquat. Res. 46 (2): 212-223. https://doi.org/10.3856/vol47-issue2-fulltext-1



DOI: https://doi.org/10.22146/jfs.83347

Article Metrics

Abstract views : 3637 | views : 674

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Jurnal Perikanan Universitas Gadjah Mada

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Perikanan Universitas Gadjah Mada (print ISSN 0853-6384; online ISSN 2502-5066) is published by Department of Fisheries, Universitas Gadjah Mada in collaboration with Semnaskan UGM (Seminar Nasional Tahunan Hasil Perikanan dan Kelautan) and ISMFR (International Symposium on Marine and Fisheries Research).

 

View My Stats