Cover Image

Effect of short and long period of salinity stress on physiological responses and biochemical markers of Aloe vera L.

https://doi.org/10.22146/ipas.78646

Mandana Mirbakhsh(1*), Sara Sohrabi sedeh(2)

(1) Purdue University
(2) Alzahra University
(*) Corresponding Author

Abstract


Salinization reduces soil health and quality, drastically limiting growth and reducing land degradation and crop yield. This comprehensive research aimed to evaluate the impact of sodium chloride increment on growth factors, amount of oxidative stress biomarker (Malondialdehyde), osmotic response (evaluated by both proline and sugars contents), photosynthesis efficiency (expressed with chlorophyll fluorescence measurement) and activity of Malate dehydrogenases (MDHs) as a regulator under abiotic stress tolerantly in Aloe in Alzahra University, Tehran. Experiments were conducted in two studies at the following concentration of sodium chloride: 0 (control), 100, 200, and 300 (mM) NaCl for 30 days (short-term treatments) and: 0 (control), 54.7, 109.5, and 164.5 (mM) NaCl for 150 days (long-term treatments). Three replications in completely randomized design were applied. The results showed that while the fresh weight of belowground biomass declined at higher salinity level (164.5 mM), no significant differences were reported in the short period of salt treatments. A considerable amount of free proline was accumulated in both short (3.594 µg.g-1 dw) and long ( 2.20 µg.g-1 dw) term studies which raised the role of proline in osmoregulation. Our results showed the decline of MDA amount (0.0003mmol.g-1FW) in 54.7 NaCl (mM) that may be due to less membrane damage in presence of moderate salinity, indicating a variety of dependent differences in biochemical markers activity.


Keywords


Aloe;abiotic stress;biochemical response;stress biomarkers

Full Text:

PDF


References

bogadallah, G. (2010). Antioxidative defense under salt stress. Plant Signal Behav., 5(4), pp. 369–374.

Alfenas, A.C., Peters, I., Brune, W., and Passador, G.C. (1991). Eletroforese de proteínas e isoenzimas de fungos e essęncias florestais. Viçosa, Universidade Federal de Viçosa. pp. 242.

Ashraf, M. and Harris, P.J.C. (2004). Potential biochemical indicators of salinity tolerance in Plants. Plant Science, 166(1), pp. 3-16.

Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball, B.A., Ottman, M.J., Wall, G.W., White, J.W., Reynolds, M.P., Alderman, P.D., Prasad, P.V.V., Aggarwal, P.K., Anothai, J., Basso, B., Biernath, C., Challinor, A.J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones, C.D., Kersebaum, K.C., Koehler, A-K., Müller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J.E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A.C., Semenov, M.A., Shcherbak, I., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P.J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nat. Clim. Change, 5, pp. 143-147.

Bates, L.S., Waldren, R.P., and Teare, I.D (1973) Rapid determination of free proline for water studies. Plant Soil, 39, pp. 205–208.

Caplan, A.B., Dekeyser, C.R., and Van Montago, M. (1990). Salinity and drought stress in rice. In: Sangwan, R.S. and Sangwan-Norrell, B. eds. The Impact of Biotechnology in Agriculture. Netherland: Kluwer Academic Publishers the Netherlands, pp. 391-402.

Chen, Z., Cuin, T.A., Zhou, M., Twomey, A., Naidu, B.P., and Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), pp. 4245-4255.

Del Rio, D., Stewart, A.J., and Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism, and Cardiovascular, 15, pp. 316-328.

Davis, B.J. (1964). Disc electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci., 121, 404-427.

Doganlar, Z.B., Demir, K., Basak, H., and Gul, I. (2010). Effects of salt stress on pigment and total soluble protein contents of the three different Tomato cultivars. Afr.J. Agri., 5(15), pp. 2056-2065.

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, pp. 350-356.

Eshun, K., and Qian, H. (2004). Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries—a review. Crit Rev Food Sci Nutr, 44 , pp. 91-96.

Gietl, C. (1992). MDH isoenzymes: cellular localization and role in the flow of metabolites between the cytoplasm and cell organelles, Biochem. Biophys. Acta,1100, pp. 217–234.

Heath, R. L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys, 125, 189-198.

Hekmatpou, D., Mehrabi, F., Rahzani, K., and Aminiyan, A. (2019). The effect of aloe vera clinical trials on prevention and healing of skin wound: a systematic review Iran. J. Med. Sci., 44, pp. 1.

Jonathan F.W., and Weeden N.F. (1990). Visualization and interpretation of plant isozymes. In: Soltis D.E., Soltis P.S., editors. Isozymes in Plant Biology. London, UK: Chpman and Hall, pp. 5–45.

Kafi, M., Bagheri, A., Nabaati, J., Mehrjerdi, M.Z., masoumi, A. (2010). The effect of salt stress on some physiological parameters of 11 Pea genotypes. Science of greenhouse culture, pp. 55-69.

Kaleem, F., Shabir, G., Aslam, K., Rasul, S., Manzoor, H., Shah, S.M., and Khan, A.R. (2018) An overview of the genetics of plant response to salt stress: Present status and the way forward. Applied Biochemistry and Biotechnology, pp. 1-29.

Liang, X., Zhang, L., Natarajan, S., and Becker, D. (2013). Proline mechanism of stress survival. Antioxid Redox Signal, 19(9), pp. 998–1011.

Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids-pigments of photosynthetic biomembranes. Method Enzymol. 148, 350–382.

Yotsova, E.K., Dobrikova, A.G., Stefanov, M.A., Kouzmanova, M., and Apostolova, E.L. (2018). Improvement of the rice photosynthetic. Theoretical and Experimental Plant Physiology, 30(3).

Ma, Q., Yue, L. J., Zhang, J. L., Wu, G. Q., Bao, A. K., Wang, S. M. (2012). Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol, 32, pp. 4–13.

Ma Y., Dias M., and Freitas H. (2020). Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci., 13.

Maan, A.A., Nazir, A., Khan, M.K.I., Ahmad, T., Zia, R., Murid, M., and Abrar, M. (2018). The therapeutic properties and applications of Aloe vera: A review. J. Herb. Med., 12, pp. 1–10.

Moghbeli, E., Fathollahi, Salari, H., Ahmadi, G., Saliqehdar, F., Safari A., and Hosseini M. (2012). Effects of salinity stress on growth and yield of Aloe vera L. Journal of Medicinal Plants Research, 6(16), pp. 3272-3277.

Morales, F., Ancin, M., Fakhet, D., Gamez, A., Seminario, A., Soba, D., Mariem, S., Garriga, M., and Aranjuelo, I. (2020). Photosynthetic Metabolism under Stressful Growth Conditions as a Bases for Crop Breeding and Yield Improvement. Plants (Basel), 9(1), pp. 88.

Mirbakhsh, M., and Hosseinzadeh, N.M. (2013). Investigation of in vitro apocarotinoid gene expression in perianth of saffron (Crocus sativus) Iran. 2nd National Congress on Medicinal Plants, pp. 15.

Murillo-Amador, B., Cordoba-Matson, M., Villegas-Espinoza, J., Hernandez-Montiel, L., Troyo-Dieguez, E. (2014). Mineral content and biochemical variables of Aloe vera L. under salt stress. PLoS One, 9(4).

Negrao, S., Schmo¨ckel, S., and Tester M. (2016) Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119.

Olfati, J., Moqbeli, E., Fathollahi, S., and Estaji, A. (2012). Salinity stress effects changed during Aloe vera L. vegetative growth. Journal of Stress Physiology & Biochemistry, 8(2), pp. 152-158.

Hare, P.D., Cress, W.A., Staden, J.V. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ., 21, pp. 535–553.

Pérez-López, U., Robredo, A., Lacuesta, M., Muñoz-Rueda, A., and Mena-Petite, A. (2010). Atmospheric CO2 concentration influences the contributions of osmolytes accumulation and cell wall elasticity to salt tolerance in barley cultivars. J. Plant Physiol., 167, 15–22.

Rahdari, P., Tavakoli, S., and Hosseini, S.M. (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in Purslane (Portulaca oleraceae L.) leaves. Stress Physio and Bio. J. 8(1), pp. 182-193.

Rahi, T.S., Singh, K., and Singh, B (2013). Screening of sodicity tolerance in Aloe vera: An industrial crop for utilization of sodic lands. Industrial Crops Products, 44, pp. 528– 533.

Ramachandra, R.A., Viswanatha, C.K., and Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, pp. 1189–1202.

Sahu, P.K., Jyoti, N., and Atul, S. (2011). Comparatives performance of Aloe vera and Aloe ferox species under pH along with desiccation stresses. International Journal Drug Discovery Herbal Research, 1, pp. 14–17.

Suzuki, N., Koussevitzky, S., Mittler, R. and Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ., 35, pp. 259 270.

Taibi, Kh., Taibi, F., Abderrahim, L., Ennajah, A., Belkhodja, M., and Mulet, J. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. Elsevier , 105.

Takahashi-Iniguez, T., Aburto-Rodriguez, N., Vilchis-Gonzalez, A., and Flores M. (2016). Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase. J Zhejiang Univ Sci B., 17(4), pp. 247–261.

Vago, M., Jaurena, G., Estevez, J., Agueda, M., Zavala, J., and Ciancia, M. (2021). Salt stress on Lotus tenuis triggers cell wall polysaccharide changes affecting their digestibility by ruminants. Plant Physiology and Biochemistry.

Verbruggen, N., and Hermans, Ch. (2008). A review; proline accumulation in plants. Springer-Verlag.

Yazici, I., Türkan, I., Sekmen, A.H., and Demiral, T. (2007). Salinity Tolerance of Purslane (Portulaca oleracea L.) Is Achieved by Enhanced Antioxidative System, Lower Level of Lipid Peroxidation and Proline Accumulation. Environ., 61, pp. 49–57.

Zheng, Q.S., Liu, Z.P., Liu, Y.L., and Liu, L. (2004). Effects of iso-osmotic salt and water stresses on growth and ionic distribution in Aloe vera seedlings. Chinese Journal Plant Ecology, 28, pp. 823–827.

Zörb, Ch., Geilfus., Geilfus, Ch., and Dietz K. (2019). A review of salinity and crop yield. Plant Biology, 21, pp. 31-38.



DOI: https://doi.org/10.22146/ipas.78646

Article Metrics

Abstract views : 1697 | views : 895

Refbacks

  • There are currently no refbacks.





Ilmu Pertanian (Agricultural Science) ISSN 0126-4214 (print), ISSN 2527-7162 (online) is published by Faculty of Agriculture Universitas Gadjah Mada collaboration with Perhimpunan Sarjana Pertanian Indonesia (PISPI) and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

web
analytics View My Stats