Assessing Neurobiological and Behavioral Responses in Rats: Modified UCMS Protocol with Psychological Stress Device
Abstract
The antidepressant effect of drugs can be tested using various methods, including unpredictable chronic mild stress (UCMS). Although the initial UCMS protocol involved administering stressors for 21 days, many modifications have been made, one of which is shortening the duration of the stressors to 10-15 days. This study aims to modify the UCMS model to increase the stress response in male Wistar rats. UCMS protocol in this study did not use predator odor (2,5-dihydro-2,4,5-trimethylthiazoline) as in the previous protocol, but a psychological stress device (PSD) was used instead. Forty male Wistar rats (150-200 grams) were given UCMS treatment for 10 and 15 days. Sucrose consumption, coat score, body weight, and serum corticosterone levels were measured. Immunohistochemical examination of 5-HT1A receptors, TNF-α, NOX2, and NF-ĸB were performed in the hippocampus part of the brain. All data were analyzed using the Mann-Whitney test. UCMS treatment for 10 and 15 days reduced sucrose consumption and body weight and increased the coat score. UCMS treatment increased corticosterone levels, decreased 5-HT1A receptor expression, and increased TNF-α, NOX2, and NF-ĸB expression. The primary behavioral response during PSD was head dip as a preparatory behavior for jumping. Modifying the UCMS model using a PSD can increase the stress response.
Keywords: animal model, depression, unpredictable chronic mild stress, psychological stress device
References
Anisman, H., Hayley, S., Turrin, N., & Merali, Z. (2002). Cytokines as a stressor: Implications for depressive illness. International Journal of Neuropsychopharmacology, 5(4), 357–373.
Avolio, E., Fazzari, G., Mele, M., Alò, R., Zizza, M., Jiao, W., Di Vito, A., Barni, T., Mandalà, M., & Canonaco, M. (2017). Unpredictable Chronic Mild Stress Paradigm Established Effects of Pro- and Anti-inflammatory Cytokine on Neurodegeneration-Linked Depressive States in Hamsters with Brain Endothelial Damages. Molecular Neurobiology, 54(8), 6446–6458.
Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245–313.
Beerling, W., Koolhaas, J. M., Ahnaou, A., Bouwknecht, J. A., de Boer, S. F., Meerlo, P., & Drinkenburg, W. H. I. M. (2011). Physiological and hormonal responses to novelty exposure in rats are mainly related to ongoing behavioral activity. Physiology and Behavior, 103(3–4), 412–420.
Black, C. N., Bot, M., Scheffer, P. G., & Penninx, B. W. J. H. (2017). Oxidative stress in major depressive and anxiety disorders, and the association with antidepressant use; Results from a large adult cohort. Psychological Medicine, 47(5), 936–948.
Carhart-Harris, R. L., & Nutt, D. J. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31(9), 1091–1120.
Che, Y., Wang, J. F., Shao, L., & Young, L. T. (2010). Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. Journal of Psychiatry and Neuroscience, 35(5), 296–302.
Chen, J., & Chen, Z. J. (2013). Regulation of NF-κB by ubiquitination. Current Opinion in Immunology, 25(1), 4–12.
Chen, L., Yao, Z., Qu, S., Zhang, J., Zhang, J., Zhang, Z., Huang, Y., & Zhong, Z. (2020). Electroacupuncture improves synaptic plasticity by regulating the 5-HT1A receptor in hippocampus of rats with chronic unpredictable mild stress. Journal of International Medical Research, 48(5).
Chen, Y., Hao, C., Chen, W., Cheng, W., Li, P., Shen, J., Tong, T., Yan, S., Huang, S., He, T., Huang, Z., & Meng, X. (2022). Antidepressant effects of acupuncture: The insights from NLRP3 mediated pyroptosis and inflammation. Neuroscience Letters, 785(June), 136787.
Daeng, B. H., Wardhana, A. W., Widodo, A., Sujuti, B. H., Mintaroem, K., & Widjajanto, E. (2015). Plasma Corticotropine Releasing Hormone (Crh) Level Difference Between Wistar Rats Exposed To Acute Stress Due To Predator and To the Psychological Stress Device. ASEAN Journal of Psychiatry, 16(2), 193–202.
De Boer, S. F., Koopmans, S. J., Slangen, J. L., & van der Gugten, J. (1989). Effects of fasting on plasma catecholamine, corticosterone and glucose concentrations under basal and stress conditions in individual rats. Physiology and Behavior, 45(5), 989–994.
Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., & Lanctôt, K. L. (2010). A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry, 67(5), 446–457.
Engel, K., Bandelow, B., Gruber, O., & Wedekind, D. (2009). Neuroimaging in anxiety disorders. Journal of Neural Transmission, 116(6), 703–716.
Estévez-Cabrera, M. M., Sánchez-Muñoz, F., Pérez-Sánchez, G., Pavón, L., Hernández-Díazcouder, A., Córtes Altamirano, J. L., Soria-Fregoso, C., Alfaro-Rodríguez, A., & Bonilla-Jaime, H. (2023). Therapeutic treatment with fluoxetine using the chronic unpredictable stress model induces changes in neurotransmitters and circulating miRNAs in extracellular vesicles. Heliyon, 9(2).
Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J. L., Vos, T., & Whiteford, H. A. (2013). Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Medicine, 10(11).
Franklin, T. B., Saab, B. J., & Mansuy, I. M. (2012). Neural Mechanisms of Stress Resilience and Vulnerability. Neuron, 75(5), 747–761.
Frisbee, J. C., Brooks, S. D., Stanley, S. C., & D’Audiffret, A. C. (2015). An unpredictable chronic mild stress protocol for instigating depressive symptoms, behavioral changes and negative health outcomes in rodents. Journal of Visualized Experiments, 2015(106), 1–8.
Giustarini, D., Dalle-Donne, I., Tsikas, D., & Rossi, R. (2009). Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Critical Reviews in Clinical Laboratory Sciences, 46(5–6), 241–281.
Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., Dodel, R., Ekman, M., Faravelli, C., Fratiglioni, L., Gannon, B., Jones, D. H., Jennum, P., Jordanova, A., Jönsson, L., Karampampa, K., Knapp, M., Kobelt, G., Kurth, T., … Olesen, J. (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718–779.
Hall, C. S. (1934). Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. Journal of Comparative Psychology, 18(3), 385–403.
Heisler, L. K., Chu, H.-M., Brennan, T. J., Danao, J. A., Bajwa, P., Parsons, L. H., & Tecott, L. H. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT 1A receptor mutant mice. Proceedings of the National Academy of Sciences, 95(25), 15049–15054.
Katz, R. J. (1982). Animal model of depression: Pharmacological sensitivity of a hedonic deficit. Pharmacology, Biochemistry and Behavior, 16(6), 965–968.
Katz, R. J. (1984). Effects of zometapine, A structurally novel antidepressant, in an animal model of depression. Pharmacology Biochemistry and Behavior, 21(4), 487–490.
Katz, R. J., Roth, K. A., & Schmaltz, K. (1981). Amphetamine and tranylcypromine in an animal model of depression: Pharmacological specificity of the reversal effect. Neuroscience and Biobehavioral Reviews, 5(2), 259–264.
Kim, G. H., Kim, J. E., Rhie, S. J., & Yoon, S. (2015). The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental Neurobiology, 24(4), 325–340.
King, S. M. (1998). Escape-related behaviours in an unstable elevated and exposed environment: I. A new behavioural model of extreme anxiety. Behavioural Brain Research, 98(1), 113–126.
Koo, J. W., Russo, S. J., Ferguson, D., Nestler, E. J., & Duman, R. S. (2010). Nuclear factor-κB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2669–2674.
Kraus, C., Castrén, E., Kasper, S., & Lanzenberger, R. (2017). Serotonin and neuroplasticity – Links between molecular, functional and structural pathophysiology in depression. Neuroscience and Biobehavioral Reviews, 77, 317–326.
Lages, Y. V. M., Rossi, A. D., Krahe, T. E., & Landeira-Fernandez, J. (2021). Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: a meta-analysis. Neuroscience and Biobehavioral Reviews, 124(January), 78–88.
Lesch, K. P., & Mössner, R. (2006). Inactivation of 5HT transport in mice: Modeling altered 5HT homeostasis implicated in emotional dysfunction, affective disorders, and somatic syndromes. Handbook of Experimental Pharmacology, 175, 417–456.
Li, Z. R., Liu, D. G., Xie, S., Wang, Y. H., Han, Y. S., Li, C. Y., Zou, M. S., & Jiang, H. X. (2022). Sleep deprivation leads to further impairment of hippocampal synaptic plasticity by suppressing melatonin secretion in the pineal gland of chronically unpredictable stress rats. European Journal of Pharmacology, 930(June), 175149.
Lindqvist, D., Dhabhar, F. S., James, S. J., Hough, C. M., Jain, F. A., Bersani, F. S., Reus, V. I., Verhoeven, J. E., Epel, E. S., Mahan, L., Rosser, R., Wolkowitz, O. M., & Mellon, S. H. (2017). Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology, 76, 197–205.
López-López, A. L., Bonilla, H. J., Escobar Villanueva, M. del C., Brianza, M. P., Vázquez, G. P., & Alarcón, F. J. A. (2016). Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats. Physiology and Behavior, 161(186), 15–23.
Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet, 367(9524), 1747–1757.
Lu, Y., Ho, C. S., Liu, X., Chua, A. N., Wang, W., McIntyre, R. S., & Ho, R. C. (2017). Chronic administration of fluoxetine and proinflammatory cytokine change in a rat model of depression. PLoS ONE, 12(10), 1–14.
Lv, H., Zhu, C., Wu, R., Ni, H., Lian, J., Xu, Y., Xia, Y., Shi, G., Li, Z., Caldwell, R. B., Caldwell, R. W., Yao, L., & Chen, Y. (2019). Chronic mild stress induced anxiety-like behaviors can Be attenuated by inhibition of NOX2-derived oxidative stress. Journal of Psychiatric Research, 114(April), 55–66.
Madrigal, J., Hurtado, O., Moro, M., Lizasoain, I., Lorenzo, P., Castrillo, A., Boscá, L., & Leza, J. (2002). The Increase in TNF-α Levels Is Implicated in NF-κB Activation and Inducible Nitric Oxide Synthase Expression in Brain Cortex after Immobilization Stress. Neuropsychopharmacology, 26(2), 155–163.
Madrigal, J. L. M., Moro, M. A., Lizasoain, I., Lorenzo, P., Castrillo, A., Boscá, L., & Leza, J. C. (2001). Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor κB-mediated mechanisms. Journal of Neurochemistry, 76(2), 532–538.
Markov, D. D. (2022). Sucrose Preference Test as a Measure of Anhedonic Behavior in a Chronic Unpredictable Mild Stress Model of Depression: Outstanding Issues. Brain Sciences, 12(10).
Matchkov, V. V., Kravtsova, V. V., Wiborg, O., Aalkjaer, C., & Bouzinova, E. V. (2015). Chronic selective serotonin reuptake inhibition modulates endothelial dysfunction and oxidative state in rat chronic mild stress model of depression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 309(8), R814–R823.
Monteiro, S., Roque, S., de Sá-Calçada, D., Sousa, N., Correia-Neves, M., & Cerqueira, J. J. (2015). An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Frontiers in Psychiatry, 6(FEB), 1–12.
Morrow, B. A., Elsworth, J. D., & Roth, R. H. (2002). Fear-like biochemical and behavioral responses in rats to the predator odor, TMT, are dependent on the exposure environment. Synapse, 46(1), 11–18.
Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S. Y., Ali, M. K., AlMazroa, M. A., Alvarado, M., Anderson, H. R., … Lopez, A. D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2197–2223.
Nollet, M. (2021). Models of Depression: Unpredictable Chronic Mild Stress in Mice. Current Protocols, 1(8).
O'Leary, O. F., & Cryan, J. F. (2013). Towards translational rodent models of depression. Cell and Tissue Research, 354(1), 141–153.
Paladini, M. S., Spero, V., Begni, V., Marchisella, F., Guidi, A., Gruca, P., Lason, M., Litwa, E., Papp, M., Riva, M. A., & Molteni, R. (2021). Behavioral and molecular effects of the antipsychotic drug blonanserin in the chronic mild stress model. Pharmacological Research, 163(December 2020), 105330.
Pesarico, A. P., Sartori, G., Brüning, C. A., Mantovani, A. C., Duarte, T., Zeni, G., & Nogueira, C. W. (2016). A novel isoquinoline compound abolishes chronic unpredictable mild stress-induced depressive-like behavior in mice. Behavioural Brain Research, 307, 73–83.
Piskunov, A., Stepanichev, M., Tishkina, A., Novikova, M., Levshina, I., & Gulyaeva, N. (2016). Chronic combined stress induces selective and long-lasting inflammatory response evoked by changes in corticosterone accumulation and signaling in rat hippocampus. Metabolic Brain Disease, 31(2), 445–454.
Piva, R., Belardo, G., & Santoro, M. G. (2006). NF-κB: A stress-regulated switch for cell survival. Antioxidants and Redox Signaling, 8(3–4), 478–486.
Remus, J. L., Stewart, L. T., Camp, R. M., Novak, C. M., & Johnson, J. D. (2015). Interaction of Metabolic Stress With Chronic Mild Stress in Altering Brain Cytokines and Sucrose Preference. Behavioral Neuroscience, 129(3), 321–330.
Rhie, S. J., Jung, E. Y., & Shim, I. (2020). The role of neuroinflammation on pathogenesis of affective disorders. Journal of Exercise Rehabilitation, 16(1), 2–9.
Rossetti, A. C., Paladini, M. S., Riva, M. A., & Molteni, R. (2020). Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacology and Therapeutics, 210, 107520.
Savitz, J., Lucki, I., & Drevets, W. C. (2009). 5-HT1A receptor function in major depressive disorder. Progress in Neurobiology, 88(1), 17–31.
Schiavone, S., Sorce, S., Dubois-Dauphin, M., Jaquet, V., Colaianna, M., Zotti, M., Cuomo, V., Trabace, L., & Krause, K. H. (2009). Involvement of NOX2 in the Development of Behavioral and Pathologic Alterations in Isolated Rats. Biological Psychiatry, 66(4), 384–392.
Serrano, F., Kolluri, N. S., Wientjes, F. B., Card, J. P., & Klann, E. (2003). NADPH oxidase immunoreactivity in the mouse brain. Brain Research, 988(1–2), 193–198.
Sotnikov, S. V., Chekmareva, N. Y., Schmid, B., Harbich, D., Malik, V., Bauer, S., Kuehne, C., Markt, P. O., Deussing, J. M., Schmidt, M. V., & Landgraf, R. (2014). Enriched environment impacts trimethylthiazoline-induced anxiety-related behavior and immediate early gene expression: Critical role of Crhr1. European Journal of Neuroscience, 40(4), 2691–2700.
Stepanichev, M. Y., Tishkina, A. O., Novikova, M. R., Levshina, I. P., Freiman, S. V., Onufriev, M. V., Levchenko, O. A., Lazareva, N. A., & Gulyaeva, N. V. (2016). Anhedonia but not passive floating is an indicator of depressive-like behavior in two chronic stress paradigms. Acta Neurobiologiae Experimentalis, 76(4), 324–333.
Strekalova, T., Couch, Y., Kholod, N., Boyks, M., Malin, D., Leprince, P., & Steinbusch, H. M. W. (2011). Update in the methodology of the chronic stress paradigm: Internal control matters. Behavioral and Brain Functions, 7, 1–18.
Tada, K., Kasamo, K., Suzuki, T., Matsuzaki, Y., & Kojima, T. (2004). Endogenous 5-HT inhibits firing activity of hippocampal CA1 pyramidal neurons during conditioned fear stress-induced freezing behavior through stimulating 5-HT1A receptors. Hippocampus, 14(2), 143–147.
Wang, W., Yang, J., Xu, J., Yu, H., Liu, Y., Wang, R., Ho, R. C. M., Ho, C. S. H., & Pan, F. (2022). Effects of High-fat Diet and Chronic Mild Stress on Depression-like Behaviors and Levels of Inflammatory Cytokines in the Hippocampus and Prefrontal Cortex of Rats. Neuroscience, 480, 178–193.
Wang, X., Li, Y., Shen, Y., & Zhang, D. (2020). Exploring the role and mechanism of imatinib in chronic unpredictable mild stress-induced depression model of rats. Indian Journal of Pharmaceutical Education and Research, 54(3), 682–689.
Wang, X., & Michaelis, E. K. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience, 2(MAR), 1–13. https://doi.org/10.3389/fnagi.2010.00012
Willner, P., Moreau, J. L., Nielsen, C. K., Papp, M., & Sluzewska, A. (1996). Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiology and Behavior, 60(1), 129–134.
Willner, P., Muscat, R., & Papp, M. (1992). Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neuroscience and Biobehavioral Reviews, 16(4), 525–534.
Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93(3), 358–364.
Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., Olesen, J., Allgulander, C., Alonso, J., Faravelli, C., Fratiglioni, L., Jennum, P., Lieb, R., Maercker, A., van Os, J., Preisig, M., Salvador-Carulla, L., Simon, R., & Steinhausen, H. C. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(9), 655–679.
Xu, L., Sun, H., Qu, C., Shen, J., Qu, C., Song, H., Li, T., Zheng, J., & Zhang, J. (2022). The environmental enrichment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive decline by inducing autophagy-mediated inflammation inhibition. Brain Research Bulletin, 187(March), 98–110.