Assessing Basin’s Dynamic Hydrological Characteristics Using Statistical Analysis on Rainfall – River Discharge Observation Data

  • Steven Reinaldo Rusli Civil Engineering Department, Universitas Katolik Parahyangan, Bandung, INDONESIA
  • Theo Senjaya Civil Engineering Department, Universitas Katolik Parahyangan, Bandung, INDONESIA
Keywords: Hydrological characteristics, statistic-based assessment, baseflow, runoff generation, Upper Citarum River basin

Abstract

Hydrological studies often rely on physical-based modelling approaches to simulate water cycles. However, such an approach requires extensive basin physical data inputs, including features, attributes, and properties that are quantifiable, which often are lacking in data-scarce areas. Therefore, this study explores an alternative viewpoint by using simple statistical analysis to assess the dynamic basin’s hydrological characteristics. We collate and divide the rainfall and discharge observation data in the Upper Citarum River basin into three periods: period 1 (2000–2005), period 2 (2000–2010), and period 3 (2000–2015). After defining baseflow separation, we quantify the basin’s baseflow using simple statistical analysis. The 5-years average of the baseflow fluctuations (33.15 m3/s, 12.88 m3/s, and 27.59 m3/s during each period) is in agreement with previous studies’ physical-based results. The subsequent frequency analysis indicates a trend of increasing rainfall, although it is not followed by the trend in the river discharge variable. Due to the stochastic nature of extreme events occurrence and available data length, we evaluate the dynamic basin’s runoff generation using quasi-synthetic rainfall instead of conventional design storm, to equalize the stimuli (rainfall) in evaluating the target system (basin’s hydrological characteristics). Under identical sets of forcing input, the quasi-synthetic river discharge consistently increases in each period, in both the median (15.39% and 25.34%) and extreme (21.86% and 29.46%) values. The results reveal the basin’s evolving hydrological responses, which is mostly influenced by anthropogenic factors. This simple statistical approach enables the evaluation of basin characteristics’ dynamics in data-limited areas, bypassing extensive data collection and random event occurrences, while still providing consistent results.

References

Abrams, M., Crippen, R. and Fujisada, H. (2020), ‘Aster global digital elevation model (gdem) and aster global water body dataset (astwbd)’, Remote Sensing 12(7), 1156. URL: https://doi.org/10.3390/rs12071156

Agaton, M., Setiawan, Y. and Effendi, H. (2016), ‘Land use/land cover change detection in an urban watershed: A case study of upper citarum watershed, west java province, indonesia’, Procedia Environmental Sciences 33, 654–660. URL: https://doi.org/10.1016/j.proenv.2016.03.120

Al-Areeq, A., Al-Zahrani, M. and Sharif, H. (2021),‘The performanceofphysicallybasedandconceptualhydrologicmodels: Acasestudyformakkahwatershed,saudi arabia’, Water 13(8), 1098. URL: https://doi.org/10.3390/w13081098

Bardossy, A., Bogardi, I. and Duckstein, L. (1990), ‘Fuzzy regression in hydrology’, Water Resources Research 26(7), 1497–1508. URL: https://doi.org/10.1029/WR026i007p01497

Beven, K. (1989), ‘Changing ideas in hydrology — the case of physically-based models’, Journal of Hydrology 105(1–2), 157–172. URL: https://doi.org/10.1016/0022-1694(89)90101-7

Du, H., Donat, M. G., Zong, S., Alexander, L. V., Manzanas, R., Kruger,A., Choi, G., Salinger, J., He, H. S., Li, M.-H.,Fujibe,F.,Nandintsetseg,B.,Rehman,S.,Abbas, F., Rusticucci, M., Srivastava, A., Zhai, P., Lippmann, T., Yabi, I. and Wu, Z. (2022), ‘Extreme precipitation on consecutive days occurs more often in a warming climate’, Bulletin of the American Meteorological Society 103(4), E1130–E1145. URL: https://doi.org/10.1175/bams-d-21-0140.1

Duncan, H. (2019), ‘Baseflow separation – a practical approach’, Journal of Hydrology 575, 308–313. URL: https://doi.org/10.1016/j.jhydrol.2019.05.040

Fadhil, M., Hidayat, Y. and Baskoro, D. (2021), ‘Identifikasi perubahan penggunaan lahan dan karakteristik hidrologi das citarum hulu’, Jurnal Ilmu Pertanian Indonesia 26(2), 213–220. URL: https://doi.org/10.18343/jipi.26.2.213

Furey, P. and Gupta,V. (2001),‘A physically based filter for separating base flow from streamflow time series’, Water Resources Research 37(11), 2709–2722. URL: https://doi.org/10.1029/2001WR000243

Gelete, G., Nourani, V., Gokcekus, H. and Gichamo, T. (2023),‘Ensemble physically based semi-distributed models for the rainfall-runoff process modeling in the data-scarce katar catchment, ethiopia’, Journal of Hydroinformatics 25(2), 567–592. URL: https://doi.org/10.2166/hydro.2023.197

Ginting, S. and Putuhena, W. (2017),‘Hujan rancangan berdasarkan analisis frekuensi regional dengan metode TL-moment’, JURNAL SUMBER DAYA AIR 12(1), 1–16. URL: https://doi.org/10.32679/jsda.v12i1.160

Hou, W., Gao, J. and Wu, S. (2020), ‘Quantitative analysis of the influencing factors and their interactions in runoff generation in a karst basin of southwestern china’, Water 12(10), 2898. URL: https://doi.org/10.3390/w12102898

Jiang, S. and Kang, L. (2019), ‘Flood frequency analysis for annual maximum streamflow using a non-stationary gev model’, E3S Web of Conferences 79, 03022. URL: https://doi.org/10.1051/e3sconf/20197903022

Kobierska, F., Engeland, K. and Thorarinsdottir, T. (2018), ‘Evaluation of design flood estimates – a case study for norway’, Hydrology Research 49(2), 450–465. URL: https://doi.org/10.2166/nh.2017.068

Kuntoro,A.,Cahyono,M.andSoentoro,E.(2018),‘Land cover and climate change impact on river discharge: Case study of upper citarum river basin’, Journal of Engineering and Technological Sciences 50(3), 364–381. URL: https://doi.org/10.5614/j.eng.tech-nol.sci.2018.50.3.4

Ladson, A., Brown, R., Neal, B. and Nathan, R. (2013), ‘A standard approach to baseflow separation using the lyne and hollick filter’, Australian Journal of Water Resources 17(1). URL: https://doi.org/10.7158/W12-028.2013.17.1

Mineo, C., Ridolfi, E., Neri, A. and Russo, F. (2019), ‘Arealreductionfactor: Theeffectofthereturnperiod’, AIP Conference Proceedings p. 210004. URL: https://doi.org/10.1063/1.5114215

Muhammad, A., Evenson, G., Stadnyk, T., Boluwade, A., Jha, S. and Coulibaly, P. (2019), ‘Impact of model structure on the accuracy of hydrological modeling of a canadian prairie watershed’,Journal of Hydrology: Regional Studies 21, 40–56. URL: https://doi.org/10.1016/j.ejrh.2018.11.005

Munier,S.and Decharme,B.(2022),‘River network and hydro-geomorphological parameters at 1∕12° resolution for global hydrological and climate studies’, Earth System Science Data 14(5), 2239–2258. URL: https://doi.org/10.5194/essd-14-2239-2022

Newman, A., Mizukami, N., Clark, M., Wood, A., Nijssen, B. and Nearing, G. (2017), ‘Benchmarking of a physically based hydrologic model’, Journal of Hydrometeorology 18(8), 2215–2225. URL: https://doi.org/10.1175/JHM-D-16-0284.1

Oktavia, S., Rustiati, N., Andiese, V., Amaliah, T., Labombang, M. and Mantika, O. (2022), ‘Baseflow index on miu watershed based on a digital graphical method’, IOP Conference Series: Earth and Environmental Science 1075(1), 012052. URL: https://doi.org/10.1088/17551315/1075/1/012052

Ostertagová,E.(2012),‘Modellingusingpolynomialregression’, Procedia Engineering 48, 500–506. URL: https://doi.org/10.1016/j.proeng.2012.09.545

Paniconi, C. and Putti, M. (2015), ‘Physically based modeling in catchment hydrology at 50: Survey and outlook’, Water Resources Research 51(9), 7090–7129. URL: https://doi.org/10.1002/2015WR017780

Pavlovic, S., Perica, S., St Laurent, M. and Mejía, A. (2016), ‘Intercomparison of selected fixed-area areal reduction factor methods’, Journal of Hydrology 537, 419–430. URL: https://doi.org/10.1016/j.jhydrol.2016.03.027

Pietersen, J., Gericke, O., Smithers, J. and Woyessa, Y. (2015), ‘Review of current methods for estimating areal reduction factors applied to south african design point rainfall and preliminary identification of new methods’,Journal of the South African Institution of Civil Engineering 57(1), 16–30. URL: https://doi.org/10.17159/23098775/2015/v57n1a2

Poggio, L., de Sousa, L., Batjes, N., Heuvelink, G., Kempen,B.,Ribeiro,E.andRossiter,D.(2021),‘Soilgrids2.0: producing soil information for the globe with quantified spatial uncertainty’, SOIL 7(1), 217–240. URL: https://doi.org/10.5194/soil-7-217-2021

Potapov, P., Hansen, M., Pickens,A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I. and Kommareddy, A. (2022), ‘The global 2000-2020 land cover and land use change dataset derived from the landsat archive: First results’, Frontiers in Remote Sensing 3. URL: https://doi.org/10.3389/frsen.2022.856903

Ratner, B. (2009), ‘The correlation coefficient: Its values range between +1/−1, or do they?’, Journal of Targeting, Measurement and Analysis for Marketing 17(2), 139–142. URL: https://doi.org/10.1057/jt.2009.5

Reis, D., Veilleux, A., Lamontagne, J., Stedinger, J. and Martins,E.(2020),‘Operational bayesian gls regression for regional hydrologic analyses’, Water Resources Research 56(8). URL: https://doi.org/10.1029/2019WR026940

Rezaei, A., Ismail, Z., Niksokhan, M., Ramli, A., Sidek, L. and Dayarian, M. (2019), ‘Investigating the effective factors influencing surface runoff generation in urban catchments – a review’, Desalination and Water Treatment 164, 276–292. URL: https://doi.org/10.5004/dwt.2019.24359

Rusli, S., Weerts, A., Mustafa, S., Irawan, D., Taufiq, A. and Bense, V. (2023), ‘Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the bandung groundwater basin, west java, indonesia’, Journal of Hydrology: Regional Studies 50, 101585. URL: https://doi.org/10.1016/j.ejrh.2023.101585

Salim,A.,Dharmawan,I.and Narendra,B.(2019),‘Pengaruh perubahan luas tutupan lahan hutan terhadap karakteristik hidrologi das citarum hulu’, Jurnal Ilmu Lingkungan 17(2), 333. URL: https://doi.org/10.14710/jil.17.2.333-340

Samantaray, S. and Sahoo, A. (2020), ‘Estimation of flood frequency using statistical method: Mahanadi river basin, india’, H2Open Journal 3(1), 189–207. URL: https://doi.org/10.2166/h2oj.2020.004

Sebayang,I.,Soekarno,I.,Cahyono,M.and Kuntoro,A. (2022),‘Environmentalflowassessmentusinglow-flow index method in upper citarum river basin, west java, indonesia’, The Open Civil Engineering Journal 16(1). URL: https://doi.org/10.2174/18741495-v16-e2210062022-2

Shangguan, W., Dai, Y., Duan, Q., Liu, B. and Yuan, H. (2014), ‘A global soil data set for earth system modeling’, Journal of Advances in Modeling Earth Systems 6(1), 249–263. URL: https://doi.org/10.1002/2013MS000293

Smith, H. (1965), ‘Handbook of applied hydrology. a compendium of water-resources technology. van te chow, ed. mcgraw-hill, new york, 1964. 1418 pp. illus.’, Science 148(3667), 219–219.URL: https://doi.org/10.1126/science.148.3667.219

Sudradjat, A., Muhamad, B. and Nurohman, F. (2020), ‘Contrasting climate induced variability of the upper citarum river baseflow and eventflow during early 20th century and recent decades’, E3S Web of Conferences 148, 03001. URL: https://doi.org/10.1051/e3sconf/202014803001

Sun, J., Wang, X., Shahid, S. and Li, H. (2021), ‘An optimized baseflow separation method for assessment of seasonal and spatial variability of baseflow and the driving factors’, Journal of Geographical Sciences 31(12), 1873–1894. URL: https://doi.org/10.1007/s11442-021-1927-8

Sun, J., Ye, F., Nedjah, N., Zhang, M. and Xu, D. (2023), ‘A practical yet accurate real-time statistical analysis library for hydrologic time-series big data’, Water 15(4), 708. URL: https://doi.org/10.3390/w15040708

Taufik, M. and Annisa’, S. (2022), ‘Baseflow index analysis for bengawan solo river, indonesia’, Agromet 36(2), 70–78. URL: https://doi.org/10.29244/j.agromet.36.2.70-78

Tunas, I. and Oka, G. (2020), ‘Effect of data length to the consistency of design rainfall’, Journal of Physics: Conference Series 1655(1), 012119. URL: https://doi.org/10.1088/17426596/1655/1/012119

van Kempen,G.,van der Wiel,K.and Melsen,L.(2021), ‘The impact of hydrological model structure on the simulation of extreme runoff events’, Natural Hazards and Earth System Sciences 21(3), 961–976. URL: https://doi.org/10.5194/nhess-21-961-2021

Wang, F., Huang, G., Li, Y., Xu, J., Wang, G., Zhang, J., Duan, R. and Ren, J. (2021), ‘A statistical hydrological model for yangtze river watershed based on stepwise cluster analysis’, Frontiers in Earth Science 9. URL: https://doi.org/10.3389/feart.2021.742331

Wang, S., Peng, H., Hu, Q. and Jiang, M. (2022), ‘Analysis of runoff generation driving factors based on hydrological model and interpretable machine learning method’, Journal of Hydrology: Regional Studies 42, 101139. URL: https://doi.org/10.1016/j.ejrh.2022.101139

Wu, S.-J., Tung, Y.-K. and Yang, J.-C. (2009), ‘Incorporating daily rainfall to derive at-site hourly depth-duration-frequency relationships’, Journal of Hydrologic Engineering 14(9), 992–1001. URL: https://doi.org/10.1061/(asce)he.19435584.0000065

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J., Sampson, C., Kanae, S. and Bates, P. (2017a), ‘A high-accuracy map of global terrain elevations’, Geophysical Research Letters 44(11), 5844–5853. URL: https://doi.org/10.1002/2017GL072874

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J., Sampson, C., Kanae, S. and Bates, P. (2017b), ‘A high-accuracy map of global terrain elevations’, Geophysical Research Letters 44(11), 5844–5853. URL: https://doi.org/10.1002/2017GL072874

Yan, D., Li, C., Zhang, X., Wang, J., Feng, J., Dong, B., Fan, J., Wang, K., Zhang, C., Wang, H., Zhang, J. and Qin, T. (2022), ‘A data set of global river networks and corresponding water resources zones divisions v2’, Scientific Data 9(1), 770. URL: https://doi.org/10.1038/s41597-022-01888-0

Yoon, P., Kim, T.-W. and Yoo, C. (2013), ‘Rainfall frequency analysis using a mixed gev distribution: a case study for annual maximum rainfalls in south korea’, Stochastic Environmental Research and Risk Assessment 27(5), 1143–1153. URL: https://doi.org/10.1007/s00477-012-0650-5

Yulianto, F., Suwarsono, Nugroho, U., Nugroho, N., Sunarmodo, W. and Khomarudin, M. (2020), ‘Spatialtemporal dynamics land use/land cover change and flood hazard mapping in the upstream citarum watershed, west java, indonesia’, Quaestiones Geographicae 39(1), 125–146. URL: https://doi.org/10.2478/quageo-2020-0010

Zheng, Y., Li, S. and Ullah, K. (2020), ‘Increased occurrence and intensity of consecutive rainfall events in the china’s three gorges reservoir area under global warming’, Earth and Space Science 7(8). URL: https://doi.org/10.1029/2020ea001188

Zhou, J., Zhao, C., Li, Q. and Yang, R. (2021),‘Research on baseflow separation based on single parameter digital filtering method’, IOP Conference Series: Earth and Environmental Science 693(1), 012079. URL: https://doi.org/10.1088/1755-1315/693/1/012079

Published
2025-01-17
How to Cite
Rusli, S. R., & Senjaya, T. (2025). Assessing Basin’s Dynamic Hydrological Characteristics Using Statistical Analysis on Rainfall – River Discharge Observation Data. Journal of the Civil Engineering Forum, 11(1), 97-108. https://doi.org/10.22146/jcef.13242
Section
Articles