Adaptive Mesh Refinement for Dam-Break Models using the Shallow Water Equations

  • Ekkehard Holzbecher Department of Applied Geology, German University of Technology in Oman
Keywords: Shallow water equations, Finite elements, Stabilization methods, Adaptive meshing, Dam-break models


The 2D shallow water equations are a common tool for the simulation of free surface fluid dynamics in civil engineering. However, the nonlinear structures of the equations' straightforward implementations lead to numerical problems, such as spurious oscillations and unphysical diffusion. Therefore, this research compared several strategies to overcome these problems, using various finite element formulations and combinations of stabilization methods and mesh options. The accuracy and performance of numerous approaches are examined on models of dam-break in one and two space dimensions. The analytical solution checks the numerical, derived shock wave heights and velocities for the 1D classical benchmark. The result showed that streamlined diffusion and shock capturing stabilization deal with the classical problems of spurious oscillations and numerical diffusion but still indicate similar problems locally in the vicinity of steep fronts and shock waves when used on fixed meshes. As adaptive meshing is the most promising method to deal with such situations, several concerned options are examined in detail. It is important to fine-tune the method to the model's needs, i.e. to adapt the maximum number of mesh refinements, the indicator functions, and the starting mesh. The use of adaptive meshing techniques leads to accurate solutions for the usual parameter range in 1D and 2D, requiring less computational resources than simulations on fixed meshes. Meanwhile, meshing reduces the model size of the 2D dam break model adaptive by almost one order of magnitude and the execution time by a factor of 20.


Augustin, M., Caiazzo, A., Fiebach, A., Fuhrmann, J., John, V., Linke, A., Umla, R., 2011. An assessment of discretizations for convection-dominated convection–diffusion equations. Comp. Meth. Appl. Mech. Eng., 200, pp. 3395–3409. URL:

Baghlani, A., 2011. Simulation of dam-break problem by a robust flux-vector splitting approach in Cartesian grid. Scientia Iranica A, 18(5), pp. 1061-1068. URL:

Bermudez, A., Rodriguez, C., Vilar, M.A., 1991. Solving shallow water equations by a mixed implicit finite element method. IMA J. Numer. Anal., 11, pp. 79–97. URL:

Biscarini, C., Di Francesco, S., Manciola, P., 2010. CFD modelling approach for dam break flow studies. Hydrol. Earth Syst. Sci., 14, pp. 705–718. URL:

Brocchini, M., Dodd, N., 2008. Nonlinear shallow water equation modeling for coastal engineering. J. Waterway, Port, Coastal, Ocean Eng., 134(2), pp. 104–120. URL:

Buttinger-Kreuzhuber, A., Horváth, Z., Noelle, S.,Blöschl, G. and Waser, J. (2019), ‘A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography’, Ad-vances in water resources 127, 89–108. URL:

Chaudry, M.H., 2008. Open-Channel Flow, Springer Publ., New York.

Chellamuthu, K.C., Ida, N., 1995. ‚A posteriori’ error indicator and error estimators for adaptive mesh refinement. COMPEL – The Int. J. for Comp. and Math. in Electrical and Electronic Eng., 14(2/3), pp. 139-156. URL:

Chen, Y., Kurganov, A., Lei, M., Liu, Y., 2013. An adaptive artificial viscosity method for the Saint-Venant system. In: Ansorge, R. et al. (Eds.). Recent Developments in the Numerics of Nonlinear Conservation Laws, Vol. 120 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer-Publ. Berlin, pp. 125-141. URL:

COMSOL Multiphysics, 2022. At: [Accessed 16 March 2022]

Donéa, J., Huerta, A., 2003. Finite Element Methods for Flow Problems. Wiley. URL:

Duran, A., 2015. A robust and well balanced scheme for the 2D Saint-Venant system on unstructured meshes with friction source term. Int. J. for Numer. Meth. in Fluids, 78(2), pp. 89-121. URL:

Erpicum, E,, Dewals, B.J., Archambeau, P., Pirotton, M., 2010. Dam break flow computation based on an efficient flux vector splitting. J. of Comp. and Appl. Math., 234, pp. 2143–2151. URL:

Garcia, M. and Popiolek, T. (2014), Adaptive mesh refinement in the dam-break problems, in ‘World Congress on Computational Mechanics’, Citeseer. URL:

Ginting, B. M. (2017), ‘A two-dimensional artificial viscosity technique for modelling discontinuity in shallow water flows’, Applied Mathematical Modelling 45, 653–683. URL:

Grätsch, T., Bathe, K.-J., 2005. A posteriori error estimation techniques in practical finite element analysis. Computers & Structures, 83, pp. 235-265. URL:

Hughes, T.J.R., Brooks, A.N., 1979. A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (Ed.), Finite Element Methods for Convection Dominated Flows, Applied Mechanics Division (AMD), Am. Soc. Mech. Eng., 34, pp. 19–35. URL:

Jalalpour, H., Tabandeh, S.M., 2014. Effect of a high resolution finite volume scheme with unstructured Voronoi mesh for dam break simulation. J. of Civil Eng. and Urbanism, 4(4), pp. 474-479. URL:

John, V., Knobloch, P., 2007. On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review. Comp. Meth. in Appl. Mech. and Eng., 196(17-20), pp. 2197-2215. URL:

Li, C., O’Donnell, J., 1997. Tidally driven residual circulation in shallow estuaries with lateral depth variation. J. of Geophys. Res., 102(C 13), pp. 27915-27929. URL:

Liu, Y., Shi, Y., Yuen, D.A., Sevre, E.O.D., Yuan, X., Xing, H.L., 2009. Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea. Acta Geotechnica, 44, pp. 129–137. URL:

Peng, S.-H., 2012. 1D and 2D numerical modeling for solving dam-break flow problems using finite volume method. J. of Appl. Math. 2012, 14p. URL:

Pilotti, M., Tomirotti, M., Valerio, G., Bacchi, B., 2010. Simplified method for the characterization of the hydrograph following a sudden partial dam break. J. of Hydr. Eng. (ASCE), 136(10), pp. 693-704. URL:

Putri, P.I.D., Iskandar, R.F., Adityawan, M.B., Kardhaba, H., Indrawati, D., 2020. 2D Shallow Water Model for Dam Break and Column Interactions. Journal of the Civil Engineering Forum, 6(3), pp. 237-246. URL:

Remacle, J.-F., Soares Frazao, S., Li, X., Shephard, M.S., 2006. An adaptive discretization of shallow-water equations based on discontinuous Galerkin methods. Int. J. Numer. Meth. Fluids, 52(8), pp. 903-923. URL:

Takase, S., Kashiyama, K., Tanaka, S., Tezduyar, T.E., 2011. Space-time SUPG finite element computation of shallow-water flows with moving shorelines. J. Comp. Mech. 48(3), pp. 293-306. URL:

Vichiantong, S., Pongsanguansin, T. and Maleewong, M. (2019), ‘Flood simulation by a wellbalanced finite volume method in tapi river basin, thailand, 2017’, Modelling and Simulation in Engineering 2019. URL:

Vosoughifar, H.R., Dolatshah, A., Shokouhi, S.K.S., 2013. Discretization of multidimensional mathematical equations of dam break phenomena using a novel approach of finite volume method. J. of Appl. Math. 2013, 12p. URL:

Wu, C., Huang, G., Zheng, Y., 1999. Theoretical solution of dam-break shock wave. J. of Hydraulic Eng., 125, pp. 1210-1215. URL:

How to Cite
Holzbecher, E. (2022). Adaptive Mesh Refinement for Dam-Break Models using the Shallow Water Equations . Journal of the Civil Engineering Forum, 9(1), 79-90.